Julius-von-Sachs-Institute, Molecular Plant Physiology and Biophysics, University Würzburg, D-97082 Wuerzburg, Germany.
Plant Cell. 2013 Aug;25(8):3010-21. doi: 10.1105/tpc.113.113621. Epub 2013 Aug 20.
Proton-driven Suc transporters allow phloem cells of higher plants to accumulate Suc to more than 1 M, which is up to ~1000-fold higher than in the surrounding extracellular space. The carrier protein can accomplish this task only because proton and Suc transport are tightly coupled. This study provides insights into this coupling by resolving the first step in the transport cycle of the Suc transporter SUT1 from maize (Zea mays). Voltage clamp fluorometry measurements combining electrophysiological techniques with fluorescence-based methods enable the visualization of conformational changes of SUT1 expressed in Xenopus laevis oocytes. Using the Suc derivate sucralose, binding of which hinders conformational changes of SUT1, the association of protons to the carrier could be dissected from transport-associated movements of the protein. These combined approaches enabled us to resolve the binding of protons to the carrier and its interrelationship with the alternating movement of the protein. The data indicate that the rate-limiting step of the reaction cycle is determined by the accessibility of the proton binding site. This, in turn, is determined by the conformational change of the SUT1 protein, alternately exposing the binding pockets to the inward and to the outward face of the membrane.
质子驱动的蔗糖转运体允许高等植物的韧皮细胞积累蔗糖至 1M 以上,这比周围细胞外空间中的蔗糖浓度高约 1000 倍。载体蛋白之所以能够完成这项任务,是因为质子和蔗糖的运输紧密偶联。本研究通过解析来自玉米(Zea mays)的蔗糖转运体 SUT1 运输循环中的第一步,深入了解了这种偶联。电压钳荧光法测量结合了电生理学技术和基于荧光的方法,使我们能够可视化在非洲爪蟾卵母细胞中表达的 SUT1 的构象变化。利用蔗糖衍生物蔗糖,它的结合会阻碍 SUT1 的构象变化,从而可以将质子与载体的结合与蛋白的运输相关运动区分开来。这些综合方法使我们能够解析质子与载体的结合及其与蛋白交替运动的关系。数据表明,反应循环的限速步骤取决于质子结合位点的可及性。而这又取决于 SUT1 蛋白的构象变化,它交替地将结合口袋暴露于膜的内侧面和外侧面。