Suppr超能文献

新型磁性纳米-微颗粒的制备及特性研究,用于靶向肺部药物递送。

Preparation and characterization of novel magnetic nano-in-microparticles for site-specific pulmonary drug delivery.

机构信息

Department of Pharmaceutical Sciences, College of Pharmacy, ‡Nanoscience and Microsystems Graduate Program, ∥Biomedical Sciences Graduate Program, §The University of New Mexico Cancer Center, and #Department of Biochemistry and Molecular Biology, The University of New Mexico Health Sciences Center , Albuquerque, New Mexico 87131, United States.

出版信息

Mol Pharm. 2013 Oct 7;10(10):3574-81. doi: 10.1021/mp3007264. Epub 2013 Sep 12.

Abstract

We propose the use of novel inhalable nano-in-microparticles (NIMs) for site-specific pulmonary drug delivery. Conventional lung cancer therapy has failed to achieve therapeutic drug concentrations at tumor sites without causing adverse effects in healthy tissue. To increase targeted drug delivery near lung tumors, we have prepared and characterized a magnetically responsive dry powder vehicle containing doxorubicin. A suspension of lactose, doxorubicin and Fe3O4 superparamagnetic iron oxide nanoparticles (SPIONs) were spray dried. NIMs were characterized for their size and morphological properties by various techniques: dynamic light scattering (DLS) and laser diffraction (LS) to determine hydrodynamic size of the SPIONs and the NIMs, respectively; next generation cascade impactor (NGI) to determine the aerodynamic diameter and fine particle fraction (FPF); scanning (SEM) and transmission (TEM) electron microscopy to analyze particle surface morphology; electron dispersive X-ray spectroscopy (EDS) to determine iron loading in NIMs; inductively coupled plasma atomic emission spectroscopy (ICP-AES) and superconducting quantum interference device (SQUID) to determine Fe3O4 content in the microparticles; and high performance liquid chromatography (HPLC) to determine doxorubicin loading in the vehicle. NIMs deposition and retention near a magnetic field was performed using a proof-of-concept cylindrical tube to mimic the conducting airway deposition. The hydrodynamic size and zeta potential of SPIONs were 56 nm and -49 mV, respectively. The hydrodynamic and aerodynamic NIM diameters were 1.6 μm and 3.27±1.69 μm, respectively. SEM micrographs reveal spherical particles with rough surface morphology. TEM and focused ion beam-SEM micrographs corroborate the porous nature of NIMs, and surface localization of SPIONs. An in vitro tracheal mimic study demonstrates more than twice the spatial deposition and retention of NIMs, compared to a liquid suspension, in regions under the influence of a strong magnetic gradient. We report the novel formulation of an inhaled and magnetically responsive NIM drug delivery vehicle. This vehicle is capable of being loaded with one or more chemotherapeutic agents, with future translational ability to be targeted to lung tumors using an external magnetic field.

摘要

我们提出使用新型吸入式纳米-微颗粒(NIMs)进行特定部位肺部药物输送。传统的肺癌治疗未能在不引起健康组织不良反应的情况下在肿瘤部位达到治疗药物浓度。为了增加靠近肺癌肿瘤的靶向药物输送,我们已经制备并表征了一种含有阿霉素的磁性响应干粉载体。乳糖、阿霉素和 Fe3O4 超顺磁氧化铁纳米颗粒(SPIONs)的悬浮液被喷雾干燥。通过各种技术对 NIMs 的大小和形态特性进行了表征:动态光散射(DLS)和激光衍射(LS)分别用于确定 SPIONs 和 NIMs 的水动力学直径;下一代级联冲击器(NGI)用于确定空气动力学直径和细颗粒分数(FPF);扫描(SEM)和透射(TEM)电子显微镜用于分析颗粒表面形态;电子能谱(EDS)用于确定 NIMs 中的铁负载量;电感耦合等离子体原子发射光谱(ICP-AES)和超导量子干涉装置(SQUID)用于确定微颗粒中的 Fe3O4 含量;高效液相色谱法(HPLC)用于确定载体中的阿霉素负载量。使用概念验证圆柱形管进行 NIMs 在磁场附近的沉积和保留,以模拟传导气道沉积。SPIONs 的水动力学大小和zeta 电位分别为 56nm 和-49mV。水动力学和空气动力学 NIM 直径分别为 1.6μm 和 3.27±1.69μm。SEM 显微照片显示出具有粗糙表面形态的球形颗粒。TEM 和聚焦离子束-SEM 显微照片证实了 NIMs 的多孔性质,以及 SPIONs 的表面定位。体外气管模拟研究表明,与液体悬浮液相比,NIMs 在强磁场梯度影响下的区域中的空间沉积和保留增加了一倍以上。我们报告了一种新型吸入式和磁性响应的 NIM 药物输送载体的配方。该载体能够装载一种或多种化疗药物,并具有使用外部磁场靶向肺癌肿瘤的未来转化能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验