Department of Biomedical Science & Engineering, Eulji University, Seongnam 461-713, Republic of Korea.
J Microbiol Biotechnol. 2013 Nov 28;23(11):1560-8. doi: 10.4014/jmb.1308.08006.
Salmonella, a main cause of foodborne diseases, encounters a variety of environmental stresses and overcomes the stresses by multiple resistance strategies. One of the general responses to hyperosmotic stress is to import or produce compatible solutes so that cells maintain fluid balance and protect proteins and lipids from denaturation. The ProP and ProU systems are the main transport systems for compatible solutes. The OsmU system, recently identified as a third osmoprotectant transport system, debilitates excessive growth as well by reducing production of trehalose. We studied a fourth putative osmoprotectant transport system, YehZYXW, with high sequence similarity with the OsmU system. A Salmonella strain lacking YehZ, a predicted substrate-binding protein, did not suffer from hyperosmolarity but rather grew more rapidly than the wild type regardless of glycine betaine, an osmoprotectant, suggesting that the YehZYXW system controls bacterial growth irrespective of transporting glycine betaine. However, the growth advantage of ΔyehZ was not attributable to an increase in OtsBA-mediated trehalose production, which is responsible for the outcompetition of the ΔosmU strain. Overexpressed YehZ in trans was capable of deaccelerating bacterial growth vice versa, supporting a role of YehZ in dampening growth. The expression of yehZ was increased in response to nutrient starvation, acidic pH, and the presence of glycine betaine under hyperosmotic stress. Identifying substrates for YehZ will help decipher the role of the YehZYXW system in regulating bacterial growth in response to environmental cues.
沙门氏菌是食源性疾病的主要病因之一,它会遇到多种环境压力,并通过多种抵抗策略来克服这些压力。应对高渗胁迫的一般反应之一是导入或产生相容性溶质,以使细胞保持流体平衡并防止蛋白质和脂质变性。ProP 和 ProU 系统是相容性溶质的主要运输系统。OsmU 系统最近被确定为第三种渗透保护剂运输系统,通过减少海藻糖的产生来削弱过度生长。我们研究了第四个假定的渗透保护剂运输系统 YehZYXW,它与 OsmU 系统具有高度的序列相似性。缺乏 YehZ(一种预测的底物结合蛋白)的沙门氏菌菌株不会受到高渗透压的影响,反而比野生型生长得更快,无论是否有甘氨酸甜菜碱(一种渗透保护剂),这表明 YehZYXW 系统控制细菌生长,而不依赖于甘氨酸甜菜碱的运输。然而,ΔyehZ 的生长优势并不是由于 OtsBA 介导的海藻糖产量增加所致,OtsBA 介导的海藻糖产量增加是导致ΔosmU 菌株竞争失败的原因。相反,在反式中过表达 YehZ 能够减缓细菌生长,这支持了 YehZ 在抑制生长方面的作用。yehZ 的表达在营养饥饿、酸性 pH 和高渗透压下存在甘氨酸甜菜碱时会增加。确定 YehZ 的底物将有助于破译 YehZYXW 系统在调节细菌生长以响应环境信号方面的作用。