Csonka L N, Ikeda T P, Fletcher S A, Kustu S
Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392.
J Bacteriol. 1994 Oct;176(20):6324-33. doi: 10.1128/jb.176.20.6324-6333.1994.
Synthesis of glutamate can be limited in bacterial strains carrying mutations to loss of function of glutamate synthase (2-oxoglutarate:glutamine aminotransferase) by using low concentrations of NH4+ in the growth medium. By using such gltB/D mutant strains of Salmonella typhimurium, we demonstrated that: (i) a large glutamate pool, previously observed to correlate with growth at high external osmolality, is actually required for optimal growth under these conditions; (ii) the osmoprotectant glycine betaine (N,N,N-trimethylglycine) apparently cannot substitute for glutamate; and (iii) accumulation of glutamate is not necessary for high levels of induction of the proU operon in vivo. Expression of the proU operon, which encodes a transport system for the osmoprotectants proline and glycine betaine, is induced > 100-fold in the wild-type strain under conditions of high external osmolality. Ramirez et al. (R. M. Ramirez, W. S. Prince, E. Bremer, and M. Villarejo, Proc. Natl. Acad. Sci. USA 86:1153-1157, 1989) observed and we confirmed that in vitro expression of the lacZ gene from the wild-type proU promoter is stimulated by 0.2 to 0.3 M K glutamate. However, we observed a very similar stimulation for lacZ expressed from the lacUV5 promoter and from the proU promoter when an important negative regulatory element downstream of this promoter (the silencer) was deleted. Since the lacUV5 promoter is not osmotically regulated in vivo and osmotic regulation of the proU promoter is largely lost as a result of deletion of the silencer, we conclude that stimulation of proU expression by K glutamate in vitro is not a specific osmoregulatory response but probably a manifestation of the optimization of in vitro transcription-translation at high concentrations of this solute. Our in vitro and in vivo results demonstrate that glutamate is not an obligatory component of the transcriptional regulation of the proU operon.
在生长培养基中使用低浓度的NH4+时,携带谷氨酸合酶(2-氧代戊二酸:谷氨酰胺转氨酶)功能丧失突变的细菌菌株中谷氨酸的合成可能会受到限制。通过使用鼠伤寒沙门氏菌的此类gltB/D突变菌株,我们证明:(i)先前观察到与高外部渗透压下的生长相关的大量谷氨酸池,实际上是这些条件下最佳生长所必需的;(ii)渗透保护剂甘氨酸甜菜碱(N,N,N-三甲基甘氨酸)显然不能替代谷氨酸;(iii)体内高水平诱导proU操纵子并不需要谷氨酸的积累。proU操纵子编码脯氨酸和甘氨酸甜菜碱的转运系统,在高外部渗透压条件下,野生型菌株中该操纵子的表达被诱导超过100倍。拉米雷斯等人(R.M.拉米雷斯、W.S.普林斯、E.布雷默和M.比利亚雷霍,《美国国家科学院院刊》86:1153-1157,1989年)观察到,我们也证实,来自野生型proU启动子的lacZ基因的体外表达受到0.2至0.3M K谷氨酸的刺激。然而,当该启动子下游的一个重要负调控元件(沉默子)被删除时,我们观察到从lacUV5启动子和proU启动子表达的lacZ受到非常相似的刺激。由于lacUV5启动子在体内不受渗透压调节,并且由于沉默子的缺失,proU启动子的渗透压调节在很大程度上丧失,我们得出结论,体外K谷氨酸对proU表达的刺激不是一种特异性的渗透调节反应,而可能是在高浓度该溶质下体外转录-翻译优化的一种表现。我们的体外和体内结果表明,谷氨酸不是proU操纵子转录调控的必需成分。