Suppr超能文献

一种膳食抗氧化剂麦硫因的微生物转运体。

A microbial transporter of the dietary antioxidant ergothioneine.

机构信息

Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Department of Chemistry, Yale University, New Haven, CT 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA.

Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA.

出版信息

Cell. 2022 Nov 23;185(24):4526-4540.e18. doi: 10.1016/j.cell.2022.10.008. Epub 2022 Nov 7.

Abstract

Low-molecular-weight (LMW) thiols are small-molecule antioxidants required for the maintenance of intracellular redox homeostasis. However, many host-associated microbes, including the gastric pathogen Helicobacter pylori, unexpectedly lack LMW-thiol biosynthetic pathways. Using reactivity-guided metabolomics, we identified the unusual LMW thiol ergothioneine (EGT) in H. pylori. Dietary EGT accumulates to millimolar levels in human tissues and has been broadly implicated in mitigating disease risk. Although certain microorganisms synthesize EGT, we discovered that H. pylori acquires this LMW thiol from the host environment using a highly selective ATP-binding cassette transporter-EgtUV. EgtUV confers a competitive colonization advantage in vivo and is widely conserved in gastrointestinal microbes. Furthermore, we found that human fecal bacteria metabolize EGT, which may contribute to production of the disease-associated metabolite trimethylamine N-oxide. Collectively, our findings illustrate a previously unappreciated mechanism of microbial redox regulation in the gut and suggest that inter-kingdom competition for dietary EGT may broadly impact human health.

摘要

低分子量(LMW)硫醇是维持细胞内氧化还原平衡所必需的小分子抗氧化剂。然而,许多与宿主相关的微生物,包括胃病原体幽门螺杆菌,出人意料地缺乏 LMW-硫醇生物合成途径。我们使用反应性导向代谢组学,在 H. pylori 中鉴定了不寻常的 LMW 硫醇麦硫因(EGT)。膳食 EGT 在人体组织中积累到毫摩尔水平,广泛涉及减轻疾病风险。尽管某些微生物合成 EGT,但我们发现 H. pylori 使用高度选择性的 ATP 结合盒转运蛋白-EgtUV 从宿主环境中获取这种 LMW 硫醇。EgtUV 在体内赋予竞争定植优势,并且在胃肠道微生物中广泛保守。此外,我们发现人类粪便细菌代谢 EGT,这可能有助于产生与疾病相关的代谢物三甲胺 N-氧化物。总之,我们的研究结果说明了肠道中微生物氧化还原调节的一个以前未被认识的机制,并表明对膳食 EGT 的种间竞争可能广泛影响人类健康。

相似文献

1
A microbial transporter of the dietary antioxidant ergothioneine.一种膳食抗氧化剂麦硫因的微生物转运体。
Cell. 2022 Nov 23;185(24):4526-4540.e18. doi: 10.1016/j.cell.2022.10.008. Epub 2022 Nov 7.
2
The versatile low-molecular-weight thiols: Beyond cell protection.多功能低分子量硫醇:超越细胞保护作用
Bioessays. 2015 Dec;37(12):1262-7. doi: 10.1002/bies.201500067. Epub 2015 Oct 30.
3
Role of Ergothioneine in Microbial Physiology and Pathogenesis.ergothioneine 在微生物生理学和发病机制中的作用。
Antioxid Redox Signal. 2018 Feb 20;28(6):431-444. doi: 10.1089/ars.2017.7300. Epub 2017 Sep 8.
8
Alternative Thiol-Based Redox Systems.替代硫醇型氧化还原系统。
Antioxid Redox Signal. 2018 Feb 20;28(6):407-409. doi: 10.1089/ars.2017.7464. Epub 2018 Jan 5.

引用本文的文献

9
Microbial metabolism of host-derived antioxidants.宿主衍生抗氧化剂的微生物代谢。
Curr Opin Chem Biol. 2025 Feb;84:102565. doi: 10.1016/j.cbpa.2024.102565. Epub 2024 Dec 24.
10
Ergothioneine biosynthesis: The present state and future prospect.麦角硫因的生物合成:现状与未来展望。
Synth Syst Biotechnol. 2024 Nov 7;10(1):314-325. doi: 10.1016/j.synbio.2024.10.008. eCollection 2025.

本文引用的文献

4
Reconstitution of a Five-Step Pathway for Bacterial Ergothioneine Catabolism.重建细菌麦角硫因分解的五步途径。
ACS Chem Biol. 2021 Feb 19;16(2):397-403. doi: 10.1021/acschembio.0c00968. Epub 2021 Feb 5.
6
HS and reactive sulfur signaling at the host-bacterial pathogen interface.宿主-细菌病原体界面的 HS 和反应性硫信号。
J Biol Chem. 2020 Sep 18;295(38):13150-13168. doi: 10.1074/jbc.REV120.011304. Epub 2020 Jul 22.
9
Reactive oxygen species (ROS) as pleiotropic physiological signalling agents.活性氧(ROS)作为多效生理信号剂。
Nat Rev Mol Cell Biol. 2020 Jul;21(7):363-383. doi: 10.1038/s41580-020-0230-3. Epub 2020 Mar 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验