Suppr超能文献

在线可见近红外光谱法用于 pH 值测量以推求变量施肥推荐的潜力。

Potential of on-line visible and near infrared spectroscopy for measurement of pH for deriving variable rate lime recommendations.

机构信息

Vocational School of Technical Sciences, Uludag University, Bursa 16059, Turkey.

出版信息

Sensors (Basel). 2013 Aug 8;13(8):10177-90. doi: 10.3390/s130810177.

Abstract

This paper aims at exploring the potential of visible and near infrared (vis-NIR) spectroscopy for on-line measurement of soil pH, with the intention to produce variable rate lime recommendation maps. An on-line vis-NIR soil sensor set up to a frame was used in this study. Lime application maps, based on pH predicted by vis-NIR techniques, were compared with maps based on traditional lab-measured pH. The validation of the calibration model using off-line spectra provided excellent prediction accuracy of pH (R2 = 0.85, RMSEP = 0.18 and RPD = 2.52), as compared to very good accuracy obtained with the on-line measured spectra (R2 = 0.81, RMSEP = 0.20 and RPD = 2.14). On-line predicted pH of all points (e.g., 2,160) resulted in the largest overall field virtual lime requirement (1.404 t), as compared to those obtained with 16 validation points off-line prediction (0.28 t), on-line prediction (0.14 t) and laboratory reference measurement (0.48 t). The conclusion is that the vis-NIR spectroscopy can be successfully used for the prediction of soil pH and for deriving lime recommendations. The advantage of the on-line sensor over sampling with limited number of samples is that more detailed information about pH can be obtained, which is the reason for a higher but precise calculated lime recommendation rate.

摘要

本文旨在探讨可见近红外(vis-NIR)光谱技术在土壤 pH 在线测量中的潜力,以期生成可变率石灰推荐图。本研究使用了安装在框架上的在线可见近红外土壤传感器。基于 vis-NIR 技术预测的 pH 值生成的石灰应用图与基于传统实验室测量 pH 值生成的图进行了比较。离线光谱验证校准模型提供了 pH 值的优异预测精度(R2 = 0.85、RMSEP = 0.18 和 RPD = 2.52),而在线测量光谱则获得了非常好的精度(R2 = 0.81、RMSEP = 0.20 和 RPD = 2.14)。与离线预测的 16 个验证点(0.28 t)、在线预测(0.14 t)和实验室参考测量(0.48 t)相比,所有点(例如 2,160)的在线预测 pH 值导致总体田间虚拟石灰需求最大(1.404 t)。结论是,可见近红外光谱技术可成功用于预测土壤 pH 值和推导石灰推荐量。与使用有限数量样本进行采样相比,在线传感器的优势在于可以获得更详细的 pH 信息,这也是计算出更高但精确的石灰推荐率的原因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/699a/3812599/af2aff025eb4/sensors-13-10177f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验