Suppr超能文献

通过多层全局优化进行CASP10的蛋白质结构建模。

Protein structure modeling for CASP10 by multiple layers of global optimization.

作者信息

Joo Keehyoung, Lee Juyong, Sim Sangjin, Lee Sun Young, Lee Kiho, Heo Seungryong, Lee In-Ho, Lee Sung Jong, Lee Jooyoung

机构信息

Center for In Silico Protein Science, Korea Institute for Advanced Study, Dongdaemun-gu, Seoul, 130-722, Korea; Center for Advanced Computation, Korea Institute for Advanced Study, Dongdaemun-gu, Seoul, 130-722, Korea.

出版信息

Proteins. 2014 Feb;82 Suppl 2:188-95. doi: 10.1002/prot.24397. Epub 2013 Oct 24.

Abstract

In the template-based modeling (TBM) category of CASP10 experiment, we introduced a new protocol called protein modeling system (PMS) to generate accurate protein structures in terms of side-chains as well as backbone trace. In the new protocol, a global optimization algorithm, called conformational space annealing (CSA), is applied to the three layers of TBM procedure: multiple sequence-structure alignment, 3D chain building, and side-chain re-modeling. For 3D chain building, we developed a new energy function which includes new distance restraint terms of Lorentzian type (derived from multiple templates), and new energy terms that combine (physical) energy terms such as dynamic fragment assembly (DFA) energy, DFIRE statistical potential energy, hydrogen bonding term, etc. These physical energy terms are expected to guide the structure modeling especially for loop regions where no template structures are available. In addition, we developed a new quality assessment method based on random forest machine learning algorithm to screen templates, multiple alignments, and final models. For TBM targets of CASP10, we find that, due to the combination of three stages of CSA global optimizations and quality assessment, the modeling accuracy of PMS improves at each additional stage of the protocol. It is especially noteworthy that the side-chains of the final PMS models are far more accurate than the models in the intermediate steps.

摘要

在CASP10实验基于模板的建模(TBM)类别中,我们引入了一种名为蛋白质建模系统(PMS)的新方案,以生成在侧链以及主链轨迹方面都准确的蛋白质结构。在新方案中,一种名为构象空间退火(CSA)的全局优化算法被应用于TBM过程的三个层面:多序列-结构比对、三维链构建和侧链重新建模。对于三维链构建,我们开发了一种新的能量函数,它包括新的洛伦兹型距离约束项(源自多个模板),以及结合了诸如动态片段组装(DFA)能量、DFIRE统计势能、氢键项等(物理)能量项的新能量项。预计这些物理能量项将指导结构建模,特别是对于没有模板结构的环区。此外,我们基于随机森林机器学习算法开发了一种新的质量评估方法,用于筛选模板、多序列比对和最终模型。对于CASP10的TBM目标,我们发现,由于CSA全局优化和质量评估三个阶段的结合,PMS的建模准确性在方案的每个额外阶段都有所提高。特别值得注意的是,最终PMS模型的侧链比中间步骤的模型要准确得多。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验