Suppr超能文献

深度挖掘——基于古环境 DNA 的全新世植被组成的后见之明。

A deep dig––hindsight on Holocene vegetation composition from ancient environmental DNA.

出版信息

Mol Ecol. 2013 Jul;22(13):3433-6. doi: 10.1111/mec.12356.

Abstract

Want a glimpse at past vegetation? Studying pollen and other plant remains, which are preserved for example in lake sediments or mires for thousands of years, allows us to document regional occurrences of plant species over radiocarbon-dated time series. Such vegetation reconstructions derived from optical analyses of fossil samples are inherently incomplete because they only comprise taxa that contribute sufficient amounts of pollen, spores, macrofossil or other evidences. To complement optical analyses for paleoecological inference, molecular markers applied to ancient DNA (aDNA) may help in disclosing information hitherto inaccessible to biologists. Parducci et al. (2013) targeted aDNA from sediment cores of two lakes in the Scandes Mountains with generic primers in a meta-barcoding approach. When compared to palynological records from the same cores, respective taxon lists show remarkable differences in their compositions, but also in quantitative representation and in taxonomic resolution similar to a previous study (Jørgensen et al. 2012). While not free of assumptions that need critical and robust testing, notably the question of possible contamination, this study provides thrilling prospects to improve our knowledge about past vegetation composition, but also other organismic groups, stored as a biological treasure in the ground.

摘要

想要一窥过去的植被吗?研究花粉和其他植物遗骸,这些植物遗骸在例如湖泊沉积物或沼泽中保存了几千年,可以让我们记录在放射性碳定年时间序列上的植物物种的区域出现情况。这种基于对化石样本的光学分析的植被重建是不完全的,因为它们只包含贡献足够数量花粉、孢子、大化石或其他证据的分类群。为了补充对古生态学推断的光学分析,应用于古代 DNA(aDNA)的分子标记可能有助于揭示迄今为止生物学家无法获得的信息。Parducci 等人(2013 年)在元条形码方法中使用通用引物针对斯堪的纳维亚山脉两个湖泊的沉积物芯中的 aDNA 进行了靶向研究。与来自同一核心的孢粉记录相比,各自的分类群列表在组成上有显著差异,但在定量表示和分类分辨率上也与之前的研究(Jørgensen 等人,2012 年)相似。虽然这种方法并非没有需要进行批判性和稳健性测试的假设,特别是关于可能污染的问题,但这项研究为改善我们对过去植被组成的了解提供了令人兴奋的前景,也为了解储存在地下的其他生物群体提供了前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验