Suppr超能文献

通过测试一般家系中数量性状变异的最优加权组合来检测罕见变异的关联性。

Detecting association of rare variants by testing an optimally weighted combination of variants for quantitative traits in general families.

作者信息

Fang Shurong, Zhang Shuanglin, Sha Qiuying

机构信息

Department of Mathematical Sciences, Michigan Technological University, Houghton, MI, USA.

出版信息

Ann Hum Genet. 2013 Nov;77(6):524-34. doi: 10.1111/ahg.12038. Epub 2013 Aug 22.

Abstract

Although next-generation sequencing technology allows sequencing the whole genome of large groups of individuals, the development of powerful statistical methods for rare variant association studies is still underway. Even though many statistical methods have been developed for mapping rare variants, most of these methods are for unrelated individuals only, whereas family data have been shown to improve power to detect rare variants. The majority of the existing methods for unrelated individuals is essentially testing the effect of a weighted combination of variants with different weighting schemes. The performance of these methods depends on the weights being used. Recently, researchers proposed a test for Testing the effect of an Optimally Weighted combination of variants (TOW) for unrelated individuals. In this article, we extend our previously developed TOW for unrelated individuals to family-based data and propose a novel test for Testing the effect of an Optimally Weighted combination of variants for Family-based designs (TOW-F). The optimal weights are analytically derived. The results of extensive simulation studies show that TOW-F is robust to population stratification in a wide range of population structures, is robust to the direction and magnitude of the effects of causal variants, and is relatively robust to the percentage of neutral variants.

摘要

尽管下一代测序技术能够对大量个体的全基因组进行测序,但用于罕见变异关联研究的强大统计方法仍在不断发展之中。尽管已经开发出许多用于定位罕见变异的统计方法,但其中大多数方法仅适用于无亲缘关系的个体,而家族数据已被证明能提高检测罕见变异的效能。现有的针对无亲缘关系个体的大多数方法本质上是在测试采用不同加权方案的变异加权组合的效应。这些方法的性能取决于所使用的权重。最近,研究人员提出了一种用于测试无亲缘关系个体中变异的最优加权组合效应(TOW)的检验方法。在本文中,我们将之前为无亲缘关系个体开发的TOW扩展到基于家族的数据,并提出了一种用于测试基于家族设计的变异最优加权组合效应(TOW-F)的新检验方法。最优权重通过解析得出。大量模拟研究的结果表明,TOW-F在广泛的群体结构中对群体分层具有稳健性,对因果变异效应的方向和大小具有稳健性,并且对中性变异的百分比相对具有稳健性。

相似文献

2
Detecting association of rare and common variants by testing an optimally weighted combination of variants.
Genet Epidemiol. 2012 Sep;36(6):561-71. doi: 10.1002/gepi.21649. Epub 2012 Jun 19.
4
Detecting association of rare and common variants based on cross-validation prediction error.
Genet Epidemiol. 2017 Apr;41(3):233-243. doi: 10.1002/gepi.22034. Epub 2017 Feb 8.
5
A general statistic to test an optimally weighted combination of common and/or rare variants.
Genet Epidemiol. 2019 Dec;43(8):966-979. doi: 10.1002/gepi.22255. Epub 2019 Sep 9.
6
Two adaptive weighting methods to test for rare variant associations in family-based designs.
Genet Epidemiol. 2012 Jul;36(5):499-507. doi: 10.1002/gepi.21646. Epub 2012 Jun 1.
7
Test of rare variant association based on affected sib-pairs.
Eur J Hum Genet. 2015 Feb;23(2):229-37. doi: 10.1038/ejhg.2014.43. Epub 2014 Mar 26.
8
Testing an optimally weighted combination of common and/or rare variants with multiple traits.
PLoS One. 2018 Jul 26;13(7):e0201186. doi: 10.1371/journal.pone.0201186. eCollection 2018.
9
A powerful approach to test an optimally weighted combination of rare variants in admixed populations.
Genet Epidemiol. 2015 May;39(4):294-305. doi: 10.1002/gepi.21894. Epub 2015 Mar 10.
10
Joint Analysis of Multiple Traits in Rare Variant Association Studies.
Ann Hum Genet. 2016 May;80(3):162-71. doi: 10.1111/ahg.12149. Epub 2016 Mar 16.

引用本文的文献

1
ADAPTIVE-WEIGHT BURDEN TEST FOR ASSOCIATIONS BETWEEN QUANTITATIVE TRAITS AND GENOTYPE DATA WITH COMPLEX CORRELATIONS.
Ann Appl Stat. 2018 Sep;12(3):1558-1582. doi: 10.1214/17-AOAS1121. Epub 2018 Sep 11.
2
Testing an optimally weighted combination of common and/or rare variants with multiple traits.
PLoS One. 2018 Jul 26;13(7):e0201186. doi: 10.1371/journal.pone.0201186. eCollection 2018.
3
Flexible and robust methods for rare-variant testing of quantitative traits in trios and nuclear families.
Genet Epidemiol. 2014 Sep;38(6):542-51. doi: 10.1002/gepi.21839. Epub 2014 Jul 14.

本文引用的文献

1
Detecting association of rare and common variants by testing an optimally weighted combination of variants.
Genet Epidemiol. 2012 Sep;36(6):561-71. doi: 10.1002/gepi.21649. Epub 2012 Jun 19.
2
Family-based association studies for next-generation sequencing.
Am J Hum Genet. 2012 Jun 8;90(6):1028-45. doi: 10.1016/j.ajhg.2012.04.022.
3
Two adaptive weighting methods to test for rare variant associations in family-based designs.
Genet Epidemiol. 2012 Jul;36(5):499-507. doi: 10.1002/gepi.21646. Epub 2012 Jun 1.
6
Joint analysis for genome-wide association studies in family-based designs.
PLoS One. 2011;6(7):e21957. doi: 10.1371/journal.pone.0021957. Epub 2011 Jul 22.
7
Optimum designs for next-generation sequencing to discover rare variants for common complex disease.
Genet Epidemiol. 2011 Sep;35(6):572-9. doi: 10.1002/gepi.20597. Epub 2011 May 26.
8
Detecting rare and common variants for complex traits: sibpair and odds ratio weighted sum statistics (SPWSS, ORWSS).
Genet Epidemiol. 2011 Jul;35(5):398-409. doi: 10.1002/gepi.20588. Epub 2011 May 18.
9
Comprehensive approach to analyzing rare genetic variants.
PLoS One. 2010 Nov 3;5(11):e13584. doi: 10.1371/journal.pone.0013584.
10
Extending rare-variant testing strategies: analysis of noncoding sequence and imputed genotypes.
Am J Hum Genet. 2010 Nov 12;87(5):604-17. doi: 10.1016/j.ajhg.2010.10.012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验