Suppr超能文献

检测复杂性状的罕见和常见变异:同胞对和优势比加权和统计量(SPWSS,ORWSS)。

Detecting rare and common variants for complex traits: sibpair and odds ratio weighted sum statistics (SPWSS, ORWSS).

机构信息

Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH 44106, USA.

出版信息

Genet Epidemiol. 2011 Jul;35(5):398-409. doi: 10.1002/gepi.20588. Epub 2011 May 18.

Abstract

It is generally known that risk variants segregate together with a disease within families, but this information has not been used in the existing statistical methods for detecting rare variants. Here we introduce two weighted sum statistics that can apply to either genome-wide association data or resequencing data for identifying rare disease variants: weights calculated based on sibpairs and odd ratios, respectively. We evaluated the two methods via extensive simulations under different disease models. We compared the proposed methods with the weighted sum statistic (WSS) proposed by Madsen and Browning, keeping the same genotyping or resequencing cost. Our methods clearly demonstrate more statistical power than the WSS. In addition, we found that using sibpair information can increase power over using only unrelated samples by more than 40%. We applied our methods to the Framingham Heart Study (FHS) and Wellcome Trust Case Control Consortium (WTCCC) hypertension datasets. Although we did not identify any genes as reaching a genome-wide significance level, we found variants in the candidate gene angiotensinogen significantly associated with hypertension at P = 6.9 × 10(-4), whereas the most significant single SNP association evidence is P = 0.063. We further applied the odds ratio weighted method to the IFIH1 gene for type-1 diabetes in the WTCCC data. Our method yielded a P-value of 4.82 × 10(-4), much more significant than that obtained by haplotype-based methods. We demonstrated that family data are extremely informative in searching for rare variants underlying complex traits, and the odds ratio weighted sum statistic is more efficient than currently existing methods.

摘要

一般来说,风险变异在家族内与疾病共同分离,但这一信息尚未应用于现有的罕见变异检测统计方法。在此,我们引入了两种加权和统计量,可分别应用于全基因组关联数据或重测序数据,以识别罕见疾病变异:基于同胞对和比值比计算的权重。我们在不同疾病模型下通过广泛的模拟评估了这两种方法。在保持相同基因分型或重测序成本的情况下,我们将所提出的方法与 Madsen 和 Browning 提出的加权和统计量(WSS)进行了比较。我们的方法在统计功效上明显优于 WSS。此外,我们发现使用同胞对信息可以比仅使用无关样本增加超过 40%的功效。我们将我们的方法应用于弗雷明汉心脏研究(FHS)和惠康信托病例对照联盟(WTCCC)高血压数据集。虽然我们没有发现任何基因达到全基因组显著性水平,但我们发现候选基因血管紧张素原中的变异与高血压显著相关,P = 6.9×10(-4),而最显著的单 SNP 关联证据为 P = 0.063。我们进一步将比值比加权方法应用于 WTCCC 数据中的 1 型糖尿病 IFIH1 基因。我们的方法得到的 P 值为 4.82×10(-4),比基于单倍型的方法更为显著。我们证明了家族数据在搜索复杂性状的罕见变异方面非常有价值,并且比值比加权和统计量比现有的方法更有效。

相似文献

引用本文的文献

6
Detecting Multiethnic Rare Variants.检测多民族罕见变异体。
Methods Mol Biol. 2017;1666:527-538. doi: 10.1007/978-1-4939-7274-6_26.

本文引用的文献

2
Comprehensive approach to analyzing rare genetic variants.综合分析罕见遗传变异。
PLoS One. 2010 Nov 3;5(11):e13584. doi: 10.1371/journal.pone.0013584.
9
Hints of hidden heritability in GWAS.GWAS 中隐藏遗传力的迹象。
Nat Genet. 2010 Jul;42(7):558-60. doi: 10.1038/ng0710-558.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验