Department of Mathematical Sciences, Michigan Technological University, Houghton, Michigan, United States of America.
PLoS One. 2011;6(7):e21957. doi: 10.1371/journal.pone.0021957. Epub 2011 Jul 22.
In family-based data, association information can be partitioned into the between-family information and the within-family information. Based on this observation, Steen et al. (Nature Genetics. 2005, 683-691) proposed an interesting two-stage test for genome-wide association (GWA) studies under family-based designs which performs genomic screening and replication using the same data set. In the first stage, a screening test based on the between-family information is used to select markers. In the second stage, an association test based on the within-family information is used to test association at the selected markers. However, we learn from the results of case-control studies (Skol et al. Nature Genetics. 2006, 209-213) that this two-stage approach may be not optimal. In this article, we propose a novel two-stage joint analysis for GWA studies under family-based designs. For this joint analysis, we first propose a new screening test that is based on the between-family information and is robust to population stratification. This new screening test is used in the first stage to select markers. Then, a joint test that combines the between-family information and within-family information is used in the second stage to test association at the selected markers. By extensive simulation studies, we demonstrate that the joint analysis always results in increased power to detect genetic association and is robust to population stratification.
在基于家庭的数据分析中,可以将关联信息分为家庭间信息和家庭内信息。基于这一观察结果,Steen 等人(《自然遗传学》。2005 年,683-691)提出了一种有趣的基于家系设计的全基因组关联(GWA)研究的两阶段检验方法,该方法使用相同的数据集中进行基因组筛选和复制。在第一阶段,使用基于家庭间信息的筛选检验来选择标记物。在第二阶段,使用基于家庭内信息的关联检验来检验所选标记物的关联。然而,我们从病例对照研究的结果中了解到(Skol 等人。《自然遗传学》。2006 年,209-213),这种两阶段方法可能不是最优的。在本文中,我们为基于家系设计的 GWA 研究提出了一种新的两阶段联合分析方法。对于这种联合分析,我们首先提出了一种新的筛选检验方法,该方法基于家庭间信息,并且对群体分层具有稳健性。这个新的筛选检验方法用于第一阶段选择标记物。然后,在第二阶段使用结合家庭间信息和家庭内信息的联合检验来检验所选标记物的关联。通过广泛的模拟研究,我们证明了联合分析总是能提高检测遗传关联的能力,并且对群体分层具有稳健性。