Suppr超能文献

高温激波管与甲醇和 D 原子及 CH3 自由基反应的模拟研究。

High-temperature shock tube and modeling studies on the reactions of methanol with D-atoms and CH3-radicals.

机构信息

Chemical Sciences and Engineering Division, Argonne National Laboratory , Argonne, Illinois 60439, United States.

出版信息

J Phys Chem A. 2013 Oct 10;117(40):10186-95. doi: 10.1021/jp4059005. Epub 2013 Sep 23.

Abstract

The shock tube technique has been used to study the hydrogen abstraction reactions D + CH3OH → CH2O + H + HD (A) and CH3 + CH3OH → CH2O + H + CH4 (B). For reaction A, the experiments span a T-range of 1016 K ≤ T ≤ 1325 K, at pressures 0.25 bar ≤ P ≤ 0.46 bar. The experiments on reaction B, CH3 + CH3OH, cover a T-range of 1138 K ≤ T ≤ 1270 K, at pressures around 0.40 bar. Reflected shock tube experiments, monitoring the depletion of D-atoms by applying D-atom atomic resonance absorption spectrometry (ARAS), were performed on reaction A using gas mixtures of C2D5I and CH3OH in Kr bath gas. C2D5I was used as precursor for D-atoms. For reaction B, reflected shock tube experiments monitoring H-atom formation with H-ARAS, were carried out using gas mixtures of diacetyl ((CH3CO)2) and CH3OH in Kr bath gas. (CH3CO)2 was used as the source of CH3-radicals. Detailed reaction models were assembled to fit the D-atom and H-atom time profiles in order to obtain experimental rate constants for reactions A and B. Total rate constants from the present experiments on D + CH3OH and CH3 + CH3OH can be represented by the Arrhenius equations kA(T) = 1.51 × 10(-10) exp(-3843 K/T) cm(3) molecules(-1) s(-1) (1016 K ≤ T ≤ 1325 K) and kB(T) = 9.62 × 10(-12) exp(-7477 K/T) cm(3) molecules(-1) s(-1) (1138 K ≤ T ≤ 1270 K). The experimentally obtained rate constants were compared with available rate data from the literature. The results from quantum chemical studies on reaction A were found to be in good agreement with the present results. The present work represents the first direct experimental study on these bimolecular reactions at combustion temperatures and is important to the high-temperature oxidation of CH3OH.

摘要

激波管技术已被用于研究氢提取反应 D + CH3OH → CH2O + H + HD (A) 和 CH3 + CH3OH → CH2O + H + CH4 (B)。对于反应 A,实验涵盖了 1016 K ≤ T ≤ 1325 K 的 T 范围,压力为 0.25 bar ≤ P ≤ 0.46 bar。对于反应 B,CH3 + CH3OH 的实验涵盖了 1138 K ≤ T ≤ 1270 K 的 T 范围,压力约为 0.40 bar。使用 Kr 浴气体中的 C2D5I 和 CH3OH 气体混合物,通过应用 D-原子原子共振吸收光谱法 (ARAS) 监测 D-原子的消耗,进行了反应 A 的反射激波管实验。C2D5I 被用作 D-原子的前体。对于反应 B,使用 Kr 浴气体中的二乙酰基 ((CH3CO)2) 和 CH3OH 气体混合物,进行了反射激波管实验,通过 H-ARAS 监测 H-原子的形成。(CH3CO)2 被用作 CH3-自由基的来源。为了拟合 D-原子和 H-原子的时间曲线,组装了详细的反应模型,以获得反应 A 和 B 的实验速率常数。本实验中关于 D + CH3OH 和 CH3 + CH3OH 的总速率常数可以由 Arrhenius 方程 kA(T) = 1.51 × 10(-10) exp(-3843 K/T) cm(3) molecules(-1) s(-1) (1016 K ≤ T ≤ 1325 K) 和 kB(T) = 9.62 × 10(-12) exp(-7477 K/T) cm(3) molecules(-1) s(-1) (1138 K ≤ T ≤ 1270 K) 表示。实验获得的速率常数与文献中的可用速率数据进行了比较。反应 A 的量子化学研究结果与本结果吻合较好。本工作代表了在燃烧温度下对这些双分子反应的首次直接实验研究,对 CH3OH 的高温氧化具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验