James Alex S, Chen Jane Y, Cepeda Carlos, Mittal Nitish, Jentsch James David, Levine Michael S, Evans Christopher J, Walwyn Wendy
Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA.
Behav Brain Res. 2013 Nov 1;256:279-83. doi: 10.1016/j.bbr.2013.08.009. Epub 2013 Aug 19.
Medium-sized spiny neurons (MSNs), the predominant neuronal population of the striatum, are an integral component of the many cortical and limbic pathways associated with reward-related behaviors. A differential role of the D1 receptor-enriched (D1) MSNs of the striatonigral direct pathway, as compared with the D2 receptor-enriched (D2) MSNs of the striatopallidal indirect pathway, in mediating the addictive behaviors associated with cocaine is beginning to emerge. However, whether opioids, well-known analgesics with euphoric properties, similarly induce dissociable signaling adaptations in these neurons remains unclear. Transgenic mice expressing green fluorescent protein (GFP)-labeled D1 or D2 neurons were implanted with intravenous jugular catheters. Mice learned to self-administer 0.1mg/kg/infusion of the opioid remifentanil during 2h sessions over 13 contiguous days. Thereafter, the electrophysiological properties of D1- and D2-MSNs in the shell region of the nucleus accumbens (NAc) were assessed. We found that prior opioid exposure did not alter the basic membrane properties nor the kinetics or amplitude of miniature excitatory postsynaptic currents (mEPSCs). However, when challenged with the mu opioid receptor (μOR) agonist DAMGO, the characteristic inhibitory profile of this receptor was altered. DAMGO inhibited the frequency of mEPSCs in D1-MSNs from control mice receiving saline and in D2-MSNs from mice exposed to remifentanil or saline, but this inhibitory profile was reduced in D1-MSNs from mice receiving remifentanil. Remifentanil exposure also altered the probability of glutamate release onto D1-, but not D2-MSNs. Together these results suggest a D1-pathway specific effect associated with the acquisition of opioid-seeking behaviors.
中等大小的棘状神经元(MSNs)是纹状体的主要神经元群体,是许多与奖赏相关行为的皮质和边缘通路的重要组成部分。与纹状体苍白球间接通路中富含D2受体的(D2)MSNs相比,纹状体黑质直接通路中富含D1受体的(D1)MSNs在介导与可卡因相关的成瘾行为中的不同作用开始显现。然而,阿片类药物作为具有欣快感的著名镇痛药,是否同样在这些神经元中诱导可分离的信号适应性变化仍不清楚。将表达绿色荧光蛋白(GFP)标记的D1或D2神经元的转基因小鼠植入颈静脉导管。小鼠在连续13天的2小时训练中学会自我注射0.1mg/kg/次的阿片类药物瑞芬太尼。此后,评估伏隔核(NAc)壳区D1和D2-MSNs的电生理特性。我们发现,先前的阿片类药物暴露并未改变基本膜特性,也未改变微小兴奋性突触后电流(mEPSCs)的动力学或幅度。然而,当用μ阿片受体(μOR)激动剂DAMGO进行刺激时,该受体的特征性抑制作用发生了改变。DAMGO抑制了接受生理盐水的对照小鼠D1-MSNs以及接受瑞芬太尼或生理盐水的小鼠D2-MSNs中mEPSCs的频率,但在接受瑞芬太尼的小鼠D1-MSNs中这种抑制作用减弱。瑞芬太尼暴露还改变了谷氨酸释放到D1-MSNs上的概率,但未改变释放到D2-MSNs上的概率。这些结果共同表明,与寻求阿片类药物行为的获得相关的D1通路特异性效应。