Skirball Center for Cardiovascular Research for Cardiovascular Research Foundation, Orangeburg, New York 10962, USA.
JACC Cardiovasc Interv. 2013 Aug;6(8):883-90. doi: 10.1016/j.jcin.2013.04.013.
This study sought to evaluate vascular drug uptake, distribution and response of second-generation paclitaxel coated balloon (PCB) (Cotavance, MEDRAD Interventional, Indianola, Pennsylvania) and compare it with first-generation technology, containing identical excipient and drug concentration.
Original PCB technologies displayed a heterogeneous deposition of crystalline paclitaxel-iopromide inside the balloon folds, whereas second-generation PCBs consisted of more homogeneous, circumferential coatings.
Paclitaxel tissue uptake was assessed in 20 iliofemoral arteries of a domestic swine. Vascular healing response was assessed in the familial hypercholesterolemic model of iliofemoral in-stent restenosis. Three weeks after bare-metal stent implantation, vascular segments were randomly revascularized with first-generation PCBs (n = 6), second-generation PCBs (n = 6), or plain balloon angioplasty (PBA) (n = 6). At 28 days, angiographic and histological evaluation was performed in all treated segments.
One-hour paclitaxel tissue uptake was 42% higher in the second-generation PCBs (p = 0.03) and resulted in more homogeneous segment-to-segment distribution compared with first-generation PCBs. Both angiography (percentage of diameter stenosis: second-generation 11.5 ± 11% vs. first-generation 21.9 ± 11% vs. PBA 46.5 ± 10%; p < 0.01) and histology (percentage of area stenosis: second-generation 50.5 ± 7% vs. first-generation 54.8 ± 18% vs. PBA 78.2 ± 9%; p < 0.01) showed a decrease in neointimal proliferation in both PCB groups. Histological variance of the percentage of area stenosis was lower in second-generation compared with first-generation PCBs (51.7 vs. 328.3; p = 0.05). The presence of peristrut fibrin deposits (0.5 vs. 2.4; p < 0.01) and medial smooth muscle cell loss (0 vs. 1.7; p < 0.01) were lower in the second-generation compared with first-generation PCBs.
In the experimental setting, second-generation PCB showed a comparable efficacy profile and more favorable vascular healing response when compared to first-generation PCB. The clinical implications of these findings require further investigation.
本研究旨在评估第二代紫杉醇涂层球囊(Cotavance,MEDRAD 介入,印第安纳波利斯,宾夕法尼亚)的血管药物摄取、分布和反应,并将其与第一代技术进行比较,第一代技术包含相同的赋形剂和药物浓度。
最初的 PCB 技术显示出紫杉醇-碘普罗胺结晶在球囊褶皱内的不均匀沉积,而第二代 PCB 则具有更均匀的环形涂层。
在 20 条猪的髂股动脉中评估紫杉醇组织摄取。在髂股动脉支架内再狭窄的家族性高胆固醇血症模型中评估血管愈合反应。裸金属支架植入 3 周后,将血管段随机用第一代 PCB(n=6)、第二代 PCB(n=6)或普通球囊血管成形术(PBA)(n=6)再血管化。在所有治疗段进行 28 天的血管造影和组织学评估。
第二代 PCB 的 1 小时紫杉醇组织摄取量增加了 42%(p=0.03),与第一代 PCB 相比,分布更均匀。血管造影(直径狭窄百分比:第二代 11.5±11%比第一代 21.9±11%比 PBA 46.5±10%;p<0.01)和组织学(面积狭窄百分比:第二代 50.5±7%比第一代 54.8±18%比 PBA 78.2±9%;p<0.01)均显示两组新内膜增殖减少。第二代 PCB 的组织学面积狭窄百分比方差低于第一代 PCB(51.7 比 328.3;p=0.05)。第二代 PCB 中存在的支架内纤维蛋白沉积物(0.5 比 2.4;p<0.01)和中层平滑肌细胞丢失(0 比 1.7;p<0.01)低于第一代 PCB。
在实验环境中,第二代 PCB 与第一代 PCB 相比,具有相当的疗效,且血管愈合反应更好。这些发现的临床意义需要进一步研究。