Suppr超能文献

通过克隆选择算法开发污水处理厂剩余污泥处理效率的预测模型。

Development of effluent removal prediction model efficiency in septic sludge treatment plant through clonal selection algorithm.

机构信息

Department of Civil Engineering, Universiti Tenaga Nasional, IKRAM-UNITEN Road, 43000 Kajang, Selangor, Malaysia.

出版信息

J Environ Manage. 2013 Nov 15;129:260-5. doi: 10.1016/j.jenvman.2013.07.022. Epub 2013 Aug 22.

Abstract

This study aims at developing a novel effluent removal management tool for septic sludge treatment plants (SSTP) using a clonal selection algorithm (CSA). The proposed CSA articulates the idea of utilizing an artificial immune system (AIS) to identify the behaviour of the SSTP, that is, using a sequence batch reactor (SBR) technology for treatment processes. The novelty of this study is the development of a predictive SSTP model for effluent discharge adopting the human immune system. Septic sludge from the individual septic tanks and package plants will be desuldged and treated in SSTP before discharging the wastewater into a waterway. The Borneo Island of Sarawak is selected as the case study. Currently, there are only two SSTPs in Sarawak, namely the Matang SSTP and the Sibu SSTP, and they are both using SBR technology. Monthly effluent discharges from 2007 to 2011 in the Matang SSTP are used in this study. Cross-validation is performed using data from the Sibu SSTP from April 2011 to July 2012. Both chemical oxygen demand (COD) and total suspended solids (TSS) in the effluent were analysed in this study. The model was validated and tested before forecasting the future effluent performance. The CSA-based SSTP model was simulated using MATLAB 7.10. The root mean square error (RMSE), mean absolute percentage error (MAPE), and correction coefficient (R) were used as performance indexes. In this study, it was found that the proposed prediction model was successful up to 84 months for the COD and 109 months for the TSS. In conclusion, the proposed CSA-based SSTP prediction model is indeed beneficial as an engineering tool to forecast the long-run performance of the SSTP and in turn, prevents infringement of future environmental balance in other towns in Sarawak.

摘要

本研究旨在开发一种新颖的污水处理厂(SSTP)废水去除管理工具,使用克隆选择算法(CSA)。所提出的 CSA 阐明了利用人工免疫系统(AIS)来识别 SSTP 行为的思想,即使用序列间歇式反应器(SBR)技术进行处理过程。本研究的新颖之处在于开发了一种基于人体免疫系统的预测性 SSTP 模型,用于废水排放。个体化粪池和成套设备的化粪池污泥将在 SSTP 中进行脱硫处理,然后再将废水排入水道。选择沙捞越的婆罗洲岛作为案例研究。目前,沙捞越只有两个 SSTP,即马塘 SSTP 和诗巫 SSTP,它们都使用 SBR 技术。本研究使用了 2007 年至 2011 年马塘 SSTP 的每月废水排放量。2011 年 4 月至 2012 年 7 月期间,对诗巫 SSTP 的数据进行了交叉验证。本研究分析了废水中的化学需氧量(COD)和总悬浮固体(TSS)。在预测未来的废水性能之前,对模型进行了验证和测试。使用 MATLAB 7.10 对基于 CSA 的 SSTP 模型进行了模拟。均方根误差(RMSE)、平均绝对百分比误差(MAPE)和校正系数(R)用作性能指标。在本研究中,发现所提出的预测模型对于 COD 可成功预测 84 个月,对于 TSS 可成功预测 109 个月。总之,所提出的基于 CSA 的 SSTP 预测模型确实是一种有益的工程工具,可以预测 SSTP 的长期性能,从而防止对沙捞越其他城镇未来环境平衡的侵犯。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验