Suppr超能文献

用于化粪池污泥处理厂出水去除预测的克隆选择算法的比较研究

A comparative study of clonal selection algorithm for effluent removal forecasting in septic sludge treatment plant.

作者信息

Chun Ting Sie, Malek M A, Ismail Amelia Ritahani

机构信息

Department of Civil Engineering, Universiti Tenaga Nasional, IKRAM-UNITEN Road, Kajang, Selangor 43000, Malaysia E-mail:

Institute of Energy, Policy and Research (IEPRE), Universiti Tenaga Nasional, IKRAM-UNITEN Road, Kajang, Selangor 43000, Malaysia.

出版信息

Water Sci Technol. 2015;71(4):524-8. doi: 10.2166/wst.2014.451.

Abstract

The development of effluent removal prediction is crucial in providing a planning tool necessary for the future development and the construction of a septic sludge treatment plant (SSTP), especially in the developing countries. In order to investigate the expected functionality of the required standard, the prediction of the effluent quality, namely biological oxygen demand, chemical oxygen demand and total suspended solid of an SSTP was modelled using an artificial intelligence approach. In this paper, we adopt the clonal selection algorithm (CSA) to set up a prediction model, with a well-established method - namely the least-square support vector machine (LS-SVM) as a baseline model. The test results of the case study showed that the prediction of the CSA-based SSTP model worked well and provided model performance as satisfactory as the LS-SVM model. The CSA approach shows that fewer control and training parameters are required for model simulation as compared with the LS-SVM approach. The ability of a CSA approach in resolving limited data samples, non-linear sample function and multidimensional pattern recognition makes it a powerful tool in modelling the prediction of effluent removals in an SSTP.

摘要

出水去除预测的发展对于提供未来发展和化粪池污泥处理厂(SSTP)建设所需的规划工具至关重要,尤其是在发展中国家。为了研究所需标准的预期功能,采用人工智能方法对SSTP的出水水质(即生物需氧量、化学需氧量和总悬浮固体)进行预测建模。在本文中,我们采用克隆选择算法(CSA)建立预测模型,并将一种成熟的方法——最小二乘支持向量机(LS-SVM)作为基线模型。案例研究的测试结果表明,基于CSA的SSTP模型预测效果良好,模型性能与LS-SVM模型相当。CSA方法表明,与LS-SVM方法相比,模型模拟所需的控制和训练参数更少。CSA方法在解决有限数据样本、非线性样本函数和多维模式识别方面的能力使其成为SSTP中出水去除预测建模的有力工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验