Suppr超能文献

基于联合直方图的立体匹配代价聚合。

Joint histogram-based cost aggregation for stereo matching.

机构信息

Advanced Digital Science Center, 1 Fusionopolis Way, Singapore.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2013 Oct;35(10):2539-45. doi: 10.1109/TPAMI.2013.15.

Abstract

This paper presents a novel method for performing efficient cost aggregation in stereo matching. The cost aggregation problem is reformulated from the perspective of a histogram, giving us the potential to reduce the complexity of the cost aggregation in stereo matching significantly. Differently from previous methods which have tried to reduce the complexity in terms of the size of an image and a matching window, our approach focuses on reducing the computational redundancy that exists among the search range, caused by a repeated filtering for all the hypotheses. Moreover, we also reduce the complexity of the window-based filtering through an efficient sampling scheme inside the matching window. The tradeoff between accuracy and complexity is extensively investigated by varying the parameters used in the proposed method. Experimental results show that the proposed method provides high-quality disparity maps with low complexity and outperforms existing local methods. This paper also provides new insights into complexity-constrained stereo-matching algorithm design.

摘要

本文提出了一种在立体匹配中进行高效代价聚合的新方法。从直方图的角度重新表述了代价聚合问题,使我们有潜力显著降低立体匹配中代价聚合的复杂度。与之前试图通过减小图像和匹配窗口的大小来降低复杂度的方法不同,我们的方法侧重于减少由于对所有假设进行重复滤波而导致的搜索范围中的计算冗余。此外,我们还通过在匹配窗口内使用有效的采样方案来降低基于窗口的滤波的复杂度。通过改变所提出方法中使用的参数,广泛研究了准确性和复杂度之间的权衡。实验结果表明,该方法在复杂度低的情况下提供了高质量的视差图,并且优于现有的局部方法。本文还为基于复杂度约束的立体匹配算法设计提供了新的思路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验