Suppr超能文献

立体视觉置信度度量的定量评估。

A quantitative evaluation of confidence measures for stereo vision.

机构信息

Department of Computer Science, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, NJ 07030, USA.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2012 Nov;34(11):2121-33. doi: 10.1109/TPAMI.2012.46.

Abstract

We present an extensive evaluation of 17 confidence measures for stereo matching that compares the most widely used measures as well as several novel techniques proposed here. We begin by categorizing these methods according to which aspects of stereo cost estimation they take into account and then assess their strengths and weaknesses. The evaluation is conducted using a winner-take-all framework on binocular and multibaseline datasets with ground truth. It measures the capability of each confidence method to rank depth estimates according to their likelihood for being correct, to detect occluded pixels, and to generate low-error depth maps by selecting among multiple hypotheses for each pixel. Our work was motivated by the observation that such an evaluation is missing from the rapidly maturing stereo literature and that our findings would be helpful to researchers in binocular and multiview stereo.

摘要

我们对 17 种立体匹配置信度度量方法进行了广泛评估,比较了最广泛使用的度量方法以及这里提出的几种新方法。我们首先根据它们考虑立体代价估计的哪些方面对这些方法进行分类,然后评估它们的优缺点。评估是在具有地面实况的双目和多基线数据集上使用“赢家通吃”框架进行的。它衡量了每种置信度方法根据其正确可能性对深度估计进行排序、检测遮挡像素以及通过为每个像素的多个假设选择来生成低误差深度图的能力。我们的工作是受到这样一个观察的启发,即这种评估在快速发展的立体文献中缺失,我们的发现将有助于双目和多视图立体研究人员。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验