Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education Hunan University, China.
Nanoscale. 2013 Oct 21;5(20):9812-20. doi: 10.1039/c3nr02972g.
A facile hydrothermal method is developed for large-scale production of three-dimensional (3D) hierarchical porous nickel cobaltate nanowire cluster arrays derived from nanosheet arrays with robust adhesion on Ni foam. Based on the morphology evolution upon reaction time, a possible formation process is proposed. The role of NH4F in formation of the structure has also been investigated based on different NH4F amounts. This unique structure significantly enhances the electroactive surface areas of the NiCo2O4 arrays, leading to better interfacial/chemical distributions at the nanoscale, fast ion and electron transfer and good strain accommodation. Thus, when it is used for supercapacitor testing, a specific capacitance of 1069 F g(-1) at a very high current density of 100 A g(-1) was obtained. Even after more than 10,000 cycles at various large current densities, a capacitance of 2000 F g(-1) at 10 A g(-1) with 93.8% retention can be achieved. It also exhibits a high-power density (26.1 kW kg(-1)) at a discharge current density of 80 A g(-1). When used as an anode material for lithium-ion batteries (LIBs), it presents a high reversible capacity of 976 mA h g(-1) at a rate of 200 mA g(-1) with good cycling stability and rate capability. This array material is rarely used as an anode material. Our results show that this unique 3D hierarchical porous nickel cobaltite is promising for electrochemical energy applications.
一种简便的水热法被开发用于大规模制备三维(3D)分层多孔镍钴酸盐纳米线簇阵列,该阵列由具有强附着力的纳米片阵列衍生而来,基底为泡沫镍。基于反应时间的形貌演变,提出了一种可能的形成过程。还研究了不同 NH4F 用量对结构形成的作用。这种独特的结构显著提高了 NiCo2O4 阵列的电活性表面积,从而在纳米尺度上实现更好的界面/化学分布、快速离子和电子转移以及良好的应变适应性。因此,当用于超级电容器测试时,在非常高的电流密度 100 A g-1 下获得了 1069 F g-1 的比电容。即使在各种大电流密度下经过 10000 次循环后,在 10 A g-1 的电流密度下仍可保持 2000 F g-1 的电容,保持率为 93.8%。它在 80 A g-1 的放电电流密度下还表现出高的功率密度(26.1 kW kg-1)。当用作锂离子电池(LIBs)的阳极材料时,它在 200 mA g-1 的倍率下具有 976 mA h g-1 的高可逆容量和良好的循环稳定性和倍率性能。这种阵列材料很少被用作阳极材料。我们的结果表明,这种独特的 3D 分层多孔镍钴酸盐在电化学能量应用方面具有广阔的前景。