Suppr超能文献

心输出量不是低频平均动脉压变异性的重要来源。

Cardiac output is not a significant source of low frequency mean arterial pressure variability.

机构信息

Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy.

出版信息

Physiol Meas. 2013 Sep;34(9):1207-16. doi: 10.1088/0967-3334/34/9/1207. Epub 2013 Aug 23.

Abstract

Spontaneous mean arterial pressure (MAP) variability may be mainly due to fluctuations in cardiac output (CO) and total peripheral resistance (TPR). While high frequency (HF ∼ 0.25 Hz) oscillations in MAP are ultimately driven by respiration, the source of low frequency (LF ∼ 0.1 Hz) fluctuations has not been fully elucidated. It is known that CO buffers these oscillations, but there is no evidence on its potential role in also generating them. The main goal was to determine whether CO is a source of LF variability in MAP. Six dogs were chronically instrumented to obtain beat-to-beat measurements of CO and MAP while the dogs were fully awake and at rest. A causal dynamic model was identified to relate the fluctuations in CO to MAP. The model was then used to predict the MAP fluctuations from the CO fluctuations. The CO fluctuations were able to predict about 70% of the MAP oscillations in the HF band but showed no predictive value in the LF band. Hence, respiration induces CO fluctuations in the HF band that, in turn, cause MAP oscillations, while TPR fluctuations appear to be the dominant mediator of LF fluctuations of MAP. CO is not a significant source of these oscillations, and it may only be responsible for dampening them, likely through the baroreflex.

摘要

自发性平均动脉压 (MAP) 变异可能主要归因于心输出量 (CO) 和总外周阻力 (TPR) 的波动。虽然 MAP 的高频 (HF ∼ 0.25 Hz) 振荡最终由呼吸驱动,但低频 (LF ∼ 0.1 Hz) 波动的来源尚未完全阐明。已知 CO 缓冲这些振荡,但没有证据表明其在产生这些振荡方面的潜在作用。主要目标是确定 CO 是否是 MAP 低频变异性的来源。六只狗被长期植入,以在狗完全清醒和休息时获得 CO 和 MAP 的逐拍测量。确定了因果动态模型,以将 CO 中的波动与 MAP 相关联。然后使用该模型从 CO 波动预测 MAP 波动。CO 波动能够预测 HF 波段中约 70%的 MAP 振荡,但在 LF 波段中没有预测价值。因此,呼吸引起 HF 波段中的 CO 波动,进而引起 MAP 振荡,而 TPR 波动似乎是 MAP 的 LF 波动的主要介导者。CO 不是这些振荡的重要来源,它可能只负责阻尼它们,可能通过压力反射。

相似文献

4
Hemodynamic basis of oscillations in systemic arterial pressure in conscious rats.
Am J Physiol. 1995 Jul;269(1 Pt 2):H62-71. doi: 10.1152/ajpheart.1995.269.1.H62.
5
New insight into the mechanism of cardiovascular dysfunction in the elderly: transfer function analysis.
Exp Biol Med (Maywood). 2005 Sep;230(8):549-57. doi: 10.1177/153537020523000806.
7
Hemodynamic analysis of arterial pressure oscillations in conscious rats.
J Auton Nerv Syst. 1995 Jan 3;50(3):239-52. doi: 10.1016/0165-1838(94)00095-2.

本文引用的文献

5
Multimodal signal processing for the analysis of cardiovascular variability.用于心血管变异性分析的多模态信号处理
Philos Trans A Math Phys Eng Sci. 2009 Jan 28;367(1887):391-409. doi: 10.1098/rsta.2008.0229.
8
The enigma of Mayer waves: Facts and models.迈尔波之谜:事实与模型。
Cardiovasc Res. 2006 Apr 1;70(1):12-21. doi: 10.1016/j.cardiores.2005.11.008. Epub 2005 Dec 19.
10
Noninvasive identification of the total peripheral resistance baroreflex.总外周阻力压力反射的无创识别
Am J Physiol Heart Circ Physiol. 2003 Mar;284(3):H947-59. doi: 10.1152/ajpheart.00532.2002. Epub 2002 Nov 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验