Suppr超能文献

总外周阻力压力反射的无创识别

Noninvasive identification of the total peripheral resistance baroreflex.

作者信息

Mukkamala Ramakrishna, Toska Karin, Cohen Richard J

机构信息

Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

出版信息

Am J Physiol Heart Circ Physiol. 2003 Mar;284(3):H947-59. doi: 10.1152/ajpheart.00532.2002. Epub 2002 Nov 14.

Abstract

We propose two identification algorithms for quantitating the total peripheral resistance (TPR) baroreflex, an important contributor to short-term arterial blood pressure (ABP) regulation. Each algorithm analyzes beat-to-beat fluctuations in ABP and cardiac output, which may both be obtained noninvasively in humans. For a theoretical evaluation, we applied both algorithms to a realistic cardiovascular model. The results contrasted with only one of the algorithms proving to be reliable. This algorithm was able to track changes in the static gains of both the arterial and cardiopulmonary TPR baroreflex. We then applied both algorithms to a preliminary set of human data and obtained contrasting results much like those obtained from the cardiovascular model, thereby making the theoretical evaluation results more meaningful. This study suggests that, with experimental testing, the reliable identification algorithm may provide a powerful, noninvasive means for quantitating the TPR baroreflex. This study also provides an example of the role that models can play in the development and initial evaluation of algorithms aimed at quantitating important physiological mechanisms.

摘要

我们提出了两种用于定量总外周阻力(TPR)压力反射的识别算法,TPR压力反射是短期动脉血压(ABP)调节的一个重要因素。每种算法都分析ABP和心输出量的逐搏波动,这两者都可以在人体中通过非侵入性方法获得。为了进行理论评估,我们将这两种算法应用于一个逼真的心血管模型。结果表明,只有一种算法是可靠的。该算法能够追踪动脉和心肺TPR压力反射静态增益的变化。然后,我们将这两种算法应用于一组初步的人体数据,并获得了与从心血管模型中获得的结果类似的对比结果,从而使理论评估结果更有意义。这项研究表明,通过实验测试,可靠的识别算法可能为定量TPR压力反射提供一种强大的非侵入性方法。这项研究还提供了一个例子,说明模型在旨在定量重要生理机制的算法的开发和初步评估中可以发挥的作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验