Suppr超能文献

3D 蛋白凝胶中藻酸盐包被周细胞与游离悬浮内皮细胞之间的分子信号旁分泌交换。

Paracrine exchanges of molecular signals between alginate-encapsulated pericytes and freely suspended endothelial cells within a 3D protein gel.

机构信息

Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA.

出版信息

Biomaterials. 2013 Nov;34(35):8899-908. doi: 10.1016/j.biomaterials.2013.08.008. Epub 2013 Aug 21.

Abstract

Paracrine signals, essential for the proper survival and functioning of tissues, may be mimicked by delivery of therapeutic proteins within engineered tissue constructs. Conventional delivery methods are of limited duration and are unresponsive to the local environment. We developed a system for sustained and regulated delivery of paracrine signals by encapsulating living cells of one type in alginate beads and co-suspending these cell-loaded particles along with unencapsulated cells of a second type within a 3D protein gel. This system was applied to vascular tissue engineering by placing human placental microvascular pericytes (PCs) in the particulate alginate phase and human umbilical vein endothelial cells (HUVECs) in the protein gel phase. Particle characteristics were optimized to keep the encapsulated PCs viable for at least two weeks. Encapsulated PCs were bioactive in vitro, secreting hepatocyte growth factor, an angiogenic protein, and responding to externally applied HUVEC-derived signals. Encapsulated PCs influenced HUVEC behavior in the surrounding gel by enhancing the formation of vessel-like structures when compared to empty alginate bead controls. In vivo, encapsulated PCs modulated the process of vascular self-assembly by HUVECs in 3D gels following implantation into immunodeficient mice. We conclude that alginate encapsulated cells can provide functional paracrine signals within engineered tissues.

摘要

旁分泌信号对于组织的正常存活和功能至关重要,可通过在工程组织构建物中递送来模拟治疗性蛋白。传统的递药方法持续时间有限,且不能响应局部环境。我们开发了一种通过将一种类型的活细胞包裹在藻酸盐珠中,并将这些负载细胞的颗粒与第二种类型的未包裹细胞一起悬浮在 3D 蛋白质凝胶中来持续和调节旁分泌信号传递的系统。该系统通过将人胎盘微血管周细胞 (PCs) 置于颗粒状藻酸盐相中,将人脐静脉内皮细胞 (HUVECs) 置于蛋白质凝胶相中,应用于血管组织工程。优化了颗粒的特性,以使包裹的 PCs 至少存活两周。体外包封的 PCs 具有生物活性,分泌血管生成蛋白肝细胞生长因子,并对外源性施加的 HUVEC 衍生信号做出反应。与空藻酸盐珠对照相比,包封的 PCs 增强了周围凝胶中血管样结构的形成,从而影响了 HUVEC 在周围凝胶中的行为。在体内,将包裹的 PCs 植入免疫缺陷小鼠的 3D 凝胶中后,调节了 HUVEC 血管自组装的过程。我们得出结论,藻酸盐包封的细胞可以在工程组织中提供功能性旁分泌信号。

相似文献

1
Paracrine exchanges of molecular signals between alginate-encapsulated pericytes and freely suspended endothelial cells within a 3D protein gel.
Biomaterials. 2013 Nov;34(35):8899-908. doi: 10.1016/j.biomaterials.2013.08.008. Epub 2013 Aug 21.
2
Release of angiogenic growth factors from cells encapsulated in alginate beads with bioactive glass.
Biomaterials. 2005 Jul;26(19):4171-9. doi: 10.1016/j.biomaterials.2004.10.021.
3
Alginate-gelatin encapsulation of human endothelial cells promoted angiogenesis in in vivo and in vitro milieu.
Biotechnol Bioeng. 2017 Dec;114(12):2920-2930. doi: 10.1002/bit.26395. Epub 2017 Aug 29.
5
Electrodeposition of alginate gels for construction of vascular-like structures.
J Biosci Bioeng. 2013 Apr;115(4):459-61. doi: 10.1016/j.jbiosc.2012.10.014. Epub 2012 Dec 5.
6
Technique for Rapidly Forming Networks of Microvessel-Like Structures.
Tissue Eng Part C Methods. 2024 May;30(5):229-237. doi: 10.1089/ten.TEC.2023.0318. Epub 2024 Apr 23.
8
Gel microstructure regulates proliferation and differentiation of MC3T3-E1 cells encapsulated in alginate beads.
Acta Biomater. 2012 May;8(5):1693-702. doi: 10.1016/j.actbio.2012.01.012. Epub 2012 Jan 18.
9
Pericytes modulate endothelial sprouting.
Cardiovasc Res. 2013 Dec 1;100(3):492-500. doi: 10.1093/cvr/cvt215. Epub 2013 Sep 16.

引用本文的文献

1
Fabrication of New Hybrid Scaffolds for Perivascular Application to Treat Limb Ischemia.
Front Cardiovasc Med. 2020 Nov 19;7:598890. doi: 10.3389/fcvm.2020.598890. eCollection 2020.
2
The Importance of Biophysical and Biochemical Stimuli in Dynamic Skeletal Muscle Models.
Front Physiol. 2018 Aug 22;9:1130. doi: 10.3389/fphys.2018.01130. eCollection 2018.
3
Injectable Alginate Hydrogel Cross-Linked by Calcium Gluconate-Loaded Porous Microspheres for Cartilage Tissue Engineering.
ACS Omega. 2017 Feb 28;2(2):443-454. doi: 10.1021/acsomega.6b00495. Epub 2017 Feb 9.
6
Pericyte-targeting drug delivery and tissue engineering.
Int J Nanomedicine. 2016 May 27;11:2397-406. doi: 10.2147/IJN.S105274. eCollection 2016.
7
Vascular stem cells-potential for clinical application.
Br Med Bull. 2016 Jun;118(1):127-37. doi: 10.1093/bmb/ldw017.
9
Biomimetic scaffolds for regeneration of volumetric muscle loss in skeletal muscle injuries.
Acta Biomater. 2015 Oct;25:2-15. doi: 10.1016/j.actbio.2015.07.038. Epub 2015 Jul 26.
10
Cell-friendly inverse opal-like hydrogels for a spatially separated co-culture system.
Macromol Rapid Commun. 2014 Sep;35(18):1578-86. doi: 10.1002/marc.201400278. Epub 2014 Aug 11.

本文引用的文献

1
Controlled protein delivery in the generation of microvascular networks.
Drug Deliv Transl Res. 2015 Apr;5(2):75-88. doi: 10.1007/s13346-012-0122-y.
4
Tissue engineering for the oncologic urinary bladder.
Nat Rev Urol. 2012 Oct;9(10):561-72. doi: 10.1038/nrurol.2012.158. Epub 2012 Aug 21.
5
Nanostructured PEG-based hydrogels with tunable physical properties for gene delivery to human mesenchymal stem cells.
Biomaterials. 2012 Sep;33(27):6533-41. doi: 10.1016/j.biomaterials.2012.05.043. Epub 2012 Jun 15.
6
Transplantation of an allogeneic vein bioengineered with autologous stem cells: a proof-of-concept study.
Lancet. 2012 Jul 21;380(9838):230-7. doi: 10.1016/S0140-6736(12)60633-3. Epub 2012 Jun 14.
7
In vitro microvessels for the study of angiogenesis and thrombosis.
Proc Natl Acad Sci U S A. 2012 Jun 12;109(24):9342-7. doi: 10.1073/pnas.1201240109. Epub 2012 May 29.
9
Nanofibrous collagen nerve conduits for spinal cord repair.
Tissue Eng Part A. 2012 May;18(9-10):1057-66. doi: 10.1089/ten.TEA.2011.0430. Epub 2012 Feb 8.
10
Tracheobronchial transplantation with a stem-cell-seeded bioartificial nanocomposite: a proof-of-concept study.
Lancet. 2011 Dec 10;378(9808):1997-2004. doi: 10.1016/S0140-6736(11)61715-7. Epub 2011 Nov 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验