Suppr超能文献

球形血管前期癌的扩散调控生长特征

Diffusion regulated growth characteristics of a spherical prevascular carcinoma.

作者信息

Adam J A, Maggelakis S A

机构信息

Department of Mathematics and Statistics, Old Dominion University, Norfolk, VA 23529-0077.

出版信息

Bull Math Biol. 1990;52(4):549-82. doi: 10.1007/BF02462267.

Abstract

Recently a mathematical model of the prevascular phases of tumor growth by diffusion has been investigated (S.A. Maggelakis and J.A. Adam, Math. Comput. Modeling, in press). In this paper we examine in detail the results and implications of that mathematical model, particularly in the light of recent experimental work carried out on multicellular spheroids. The overall growth characteristics are determined in the present model by four parameters: Q, gamma, b, and delta, which depend on information about inhibitor production rates, oxygen consumption rates, volume loss and cell proliferation rates, and measures of the degree of non-uniformity of the various diffusion processes that take place. The integro-differential growth equation is solved for the outer spheroid radius R0(t) and three related inner radii subject to the solution of the governing time-independent diffusion equations (under conditions of diffusive equilibrium) and the appropriate boundary conditions. Hopefully, future experimental work will enable reasonable bounds to be placed on parameter values referred to in this model: meanwhile, specific experimentally-provided initial data can be used to predict subsequent growth characteristics of in vitro multicellular spheroids. This will be one objective of future studies.

摘要

最近,一个关于肿瘤通过扩散进行血管前期生长的数学模型已被研究(S.A. 马盖拉基斯和J.A. 亚当,《数学计算建模》,即将发表)。在本文中,我们将详细研究该数学模型的结果及其影响,特别是结合最近在多细胞球体上进行的实验工作。在当前模型中,总体生长特征由四个参数决定:Q、γ、b和δ,这些参数取决于抑制剂产生速率、氧气消耗速率、体积损失和细胞增殖速率的相关信息,以及所发生的各种扩散过程的不均匀程度的度量。对于外部球体半径R0(t)和三个相关的内部半径,在服从稳态扩散方程(在扩散平衡条件下)的解和适当边界条件的情况下,求解积分 - 微分生长方程。希望未来的实验工作能够为该模型中提到的参数值设定合理的界限:同时,特定的实验提供的初始数据可用于预测体外多细胞球体的后续生长特征。这将是未来研究的一个目标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验