Suppr超能文献

霍乱弧菌的 Na+驱动鞭毛的功能取决于渗透压和 pH 值。

The function of the Na+-driven flagellum of Vibrio cholerae is determined by osmolality and pH.

机构信息

Institute of Microbiology, University of Hohenheim (Stuttgart), Stuttgart, Germany.

出版信息

J Bacteriol. 2013 Nov;195(21):4888-99. doi: 10.1128/JB.00353-13. Epub 2013 Aug 23.

Abstract

Vibrio cholerae is motile by its polar flagellum, which is driven by a Na(+)-conducting motor. The stators of the motor, composed of four PomA and two PomB subunits, provide access for Na(+) to the torque-generating unit of the motor. To characterize the Na(+) pathway formed by the PomAB complex, we studied the influence of chloride salts (chaotropic, Na(+), and K(+)) and pH on the motility of V. cholerae. Motility decreased at elevated pH but increased if a chaotropic chloride salt was added, which rules out a direct Na(+) and H(+) competition in the process of binding to the conserved PomB D23 residue. Cells expressing the PomB S26A/T or D42N variants lost motility at low Na(+) concentrations but regained motility in the presence of 170 mM chloride. Both PomA and PomB were modified by N,N'-dicyclohexylcarbodiimide (DCCD), indicating the presence of protonated carboxyl groups in the hydrophobic regions of the two proteins. Na(+) did not protect PomA and PomB from this modification. Our study shows that both osmolality and pH have an influence on the function of the flagellum from V. cholerae. We propose that D23, S26, and D42 of PomB are part of an ion-conducting pathway formed by the PomAB stator complex.

摘要

霍乱弧菌通过其极性鞭毛运动,该鞭毛由一个 Na(+)传导马达驱动。马达的定子由四个 PomA 和两个 PomB 亚基组成,为 Na(+)进入马达的扭矩产生单元提供通道。为了表征 PomAB 复合物形成的 Na(+)途径,我们研究了氯化物盐(离液盐、Na(+)和 K(+))和 pH 值对霍乱弧菌运动性的影响。运动性在 pH 值升高时降低,但如果添加离液盐氯化物,则会增加,这排除了在与保守的 PomB D23 残基结合过程中 Na(+)和 H(+)的直接竞争。表达 PomB S26A/T 或 D42N 变体的细胞在低 Na(+)浓度下失去运动性,但在存在 170 mM 氯化物的情况下恢复运动性。PomA 和 PomB 都被 N,N'-二环己基碳二亚胺 (DCCD) 修饰,表明两种蛋白质的疏水区存在质子化的羧基。Na(+)不能保护 PomA 和 PomB 免受这种修饰。我们的研究表明渗透压和 pH 值都对霍乱弧菌鞭毛的功能有影响。我们提出 PomB 的 D23、S26 和 D42 是由 PomAB 定子复合物形成的离子传导途径的一部分。

相似文献

1
The function of the Na+-driven flagellum of Vibrio cholerae is determined by osmolality and pH.
J Bacteriol. 2013 Nov;195(21):4888-99. doi: 10.1128/JB.00353-13. Epub 2013 Aug 23.
2
Functional role of a conserved aspartic acid residue in the motor of the Na(+)-driven flagellum from Vibrio cholerae.
Biochim Biophys Acta. 2009 Oct;1787(10):1198-204. doi: 10.1016/j.bbabio.2009.05.015. Epub 2009 Jun 6.
3
Serine 26 in the PomB subunit of the flagellar motor is essential for hypermotility of Vibrio cholerae.
PLoS One. 2015 Apr 15;10(4):e0123518. doi: 10.1371/journal.pone.0123518. eCollection 2015.
6
The polar flagellar motor of Vibrio cholerae is driven by an Na+ motive force.
J Bacteriol. 1999 Mar;181(6):1927-30. doi: 10.1128/JB.181.6.1927-1930.1999.
7
Ion-coupling determinants of Na+-driven and H+-driven flagellar motors.
J Mol Biol. 2003 Mar 21;327(2):453-63. doi: 10.1016/s0022-2836(03)00096-2.
10
Assembly of motor proteins, PomA and PomB, in the Na+-driven stator of the flagellar motor.
J Mol Biol. 2005 Aug 26;351(4):707-17. doi: 10.1016/j.jmb.2005.06.037.

引用本文的文献

1
Advances in cholera research: from molecular biology to public health initiatives.
Front Microbiol. 2023 May 22;14:1178538. doi: 10.3389/fmicb.2023.1178538. eCollection 2023.
2
Voltage vs. Ligand II: Structural insights of the intrinsic flexibility in cyclic nucleotide-gated channels.
Channels (Austin). 2019 Dec;13(1):382-399. doi: 10.1080/19336950.2019.1666456.
3
as Host for Expression of Multisubunit Membrane Protein Complexes.
Front Microbiol. 2018 Oct 25;9:2537. doi: 10.3389/fmicb.2018.02537. eCollection 2018.
5
The Na+-Translocating NADH:Quinone Oxidoreductase Enhances Oxidative Stress in the Cytoplasm of Vibrio cholerae.
J Bacteriol. 2016 Aug 11;198(17):2307-17. doi: 10.1128/JB.00342-16. Print 2016 Sep 1.
6
Response of Vibrio cholerae to the Catecholamine Hormones Epinephrine and Norepinephrine.
J Bacteriol. 2015 Dec;197(24):3769-78. doi: 10.1128/JB.00345-15. Epub 2015 Sep 28.
7
Serine 26 in the PomB subunit of the flagellar motor is essential for hypermotility of Vibrio cholerae.
PLoS One. 2015 Apr 15;10(4):e0123518. doi: 10.1371/journal.pone.0123518. eCollection 2015.

本文引用的文献

2
Intragenic suppressor of a plug deletion nonmotility mutation in PotB, a chimeric stator protein of sodium-driven flagella.
J Bacteriol. 2012 Dec;194(24):6728-35. doi: 10.1128/JB.01132-12. Epub 2012 Sep 28.
3
Engineering rotor ring stoichiometries in the ATP synthase.
Proc Natl Acad Sci U S A. 2012 Jun 19;109(25):E1599-608. doi: 10.1073/pnas.1120027109. Epub 2012 May 24.
4
Architecture of the flagellar rotor.
EMBO J. 2011 Jun 14;30(14):2962-71. doi: 10.1038/emboj.2011.188.
5
Structure of the flagellar motor protein complex PomAB: implications for the torque-generating conformation.
J Bacteriol. 2011 Aug;193(15):3863-70. doi: 10.1128/JB.05021-11. Epub 2011 Jun 3.
7
Characterization of the periplasmic region of PomB, a Na+-driven flagellar stator protein in Vibrio alginolyticus.
J Bacteriol. 2011 Aug;193(15):3773-84. doi: 10.1128/JB.00113-11. Epub 2011 May 20.
8
Site-directed mutagenesis by double polymerase chain reaction : megaprimer method.
Methods Mol Biol. 1993;15:277-86. doi: 10.1385/0-89603-244-2:277.
9
A new type of proton coordination in an F(1)F(o)-ATP synthase rotor ring.
PLoS Biol. 2010 Aug 3;8(8):e1000443. doi: 10.1371/journal.pbio.1000443.
10
Structural and energetic basis for H+ versus Na+ binding selectivity in ATP synthase Fo rotors.
Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):763-72. doi: 10.1016/j.bbabio.2010.04.014. Epub 2010 Apr 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验