Suppr超能文献

一种纯L1范数主成分分析

A Pure L1-norm Principal Component Analysis.

作者信息

Brooks Jp, Dulá Jh, Boone El

机构信息

Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, Richmond, VA 23284.

出版信息

Comput Stat Data Anal. 2013 May 1;61:83-98. doi: 10.1016/j.csda.2012.11.007.

Abstract

The norm has been applied in numerous variations of principal component analysis (PCA). -norm PCA is an attractive alternative to traditional -based PCA because it can impart robustness in the presence of outliers and is indicated for models where standard Gaussian assumptions about the noise may not apply. Of all the previously-proposed PCA schemes that recast PCA as an optimization problem involving the norm, none provide globally optimal solutions in polynomial time. This paper proposes an -norm PCA procedure based on the efficient calculation of the optimal solution of the -norm best-fit hyperplane problem. We present a procedure called -PCA* based on the application of this idea that fits data to subspaces of successively smaller dimension. The procedure is implemented and tested on a diverse problem suite. Our tests show that -PCA* is the indicated procedure in the presence of unbalanced outlier contamination.

摘要

该范数已应用于主成分分析(PCA)的众多变体中。-范数PCA是传统基于-的PCA的一种有吸引力的替代方法,因为它在存在异常值的情况下可以增强稳健性,并且适用于标准高斯噪声假设可能不适用的模型。在所有先前提出的将PCA重新表述为涉及-范数的优化问题的PCA方案中,没有一个能在多项式时间内提供全局最优解。本文基于-范数最佳拟合超平面问题最优解的高效计算,提出了一种-范数PCA方法。我们提出了一种基于此思想应用的过程,称为-PCA*,它将数据拟合到维度逐渐减小的子空间。该过程在各种问题集上进行了实现和测试。我们的测试表明,在存在不平衡异常值污染的情况下,-PCA*是适用的方法。

相似文献

1
A Pure L1-norm Principal Component Analysis.一种纯L1范数主成分分析
Comput Stat Data Anal. 2013 May 1;61:83-98. doi: 10.1016/j.csda.2012.11.007.
2
Non-Greedy L21-Norm Maximization for Principal Component Analysis.用于主成分分析的非贪婪L21范数最大化
IEEE Trans Image Process. 2021;30:5277-5286. doi: 10.1109/TIP.2021.3073282. Epub 2021 Jun 2.
3
$\ell _{2,p}$ -Norm Based PCA for Image Recognition.基于$\ell _{2,p}$范数的图像识别主成分分析。
IEEE Trans Image Process. 2018 Mar;27(3):1336-1346. doi: 10.1109/TIP.2017.2777184. Epub 2017 Nov 23.
4
On the Link Between L1-PCA and ICA.母语负相关成分分析与独立成分分析的联系
IEEE Trans Pattern Anal Mach Intell. 2017 Mar;39(3):515-528. doi: 10.1109/TPAMI.2016.2557797. Epub 2016 Jun 22.
5
A Simple and Fast Algorithm for L1-Norm Kernel PCA.一种用于 L1 范数核主成分分析的简单快速算法。
IEEE Trans Pattern Anal Mach Intell. 2020 Aug;42(8):1842-1855. doi: 10.1109/TPAMI.2019.2903505. Epub 2019 Mar 6.
6
Principal component analysis based on l1-norm maximization.基于l1范数最大化的主成分分析。
IEEE Trans Pattern Anal Mach Intell. 2008 Sep;30(9):1672-80. doi: 10.1109/TPAMI.2008.114.
8
10
Discrete Robust Principal Component Analysis via Binary Weights Self-Learning.通过二元权重自学习的离散鲁棒主成分分析
IEEE Trans Neural Netw Learn Syst. 2023 Nov;34(11):9064-9077. doi: 10.1109/TNNLS.2022.3155607. Epub 2023 Oct 27.

本文引用的文献

1
The L1-norm best-fit hyperplane problem.L1范数最佳拟合超平面问题。
Appl Math Lett. 2012 Jan 1;26(1):51-56. doi: 10.1016/j.aml.2012.03.031. Epub 2012 Apr 10.
2
Principal component analysis based on l1-norm maximization.基于l1范数最大化的主成分分析。
IEEE Trans Pattern Anal Mach Intell. 2008 Sep;30(9):1672-80. doi: 10.1109/TPAMI.2008.114.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验