Drews Carl
NCAR Earth System Laboratory, National Center for Atmospheric Research, Boulder, Colorado, United States of America.
PLoS One. 2013 Aug 19;8(8):e72510. doi: 10.1371/journal.pone.0072510. eCollection 2013.
The air-sea drag coefficient controls the transfer of momentum from wind to water. In modeling storm surge, this coefficient is a crucial parameter for estimating the surge height. This study uses two strong wind events on Lake Erie to calibrate the drag coefficient using the Coupled Ocean Atmosphere Wave Sediment Transport (COAWST) modeling system and the the Regional Ocean Modeling System (ROMS). Simulated waves are generated on the lake with Simulating WAves Nearshore (SWAN). Wind setdown provides the opportunity to eliminate wave setup as a contributing factor, since waves are minimal at the upwind shore. The study finds that model results significantly underestimate wind setdown and storm surge when a typical open-ocean formulation without waves is used for the drag coefficient. The contribution of waves to wind setdown and storm surge is 34.7%. Scattered lake ice also increases the effective drag coefficient by a factor of 1.1.
海气拖曳系数控制着动量从风到水的传递。在风暴潮建模中,该系数是估算潮位高度的关键参数。本研究利用伊利湖上的两次强风事件,使用耦合海洋大气波浪泥沙输运(COAWST)建模系统和区域海洋建模系统(ROMS)来校准拖曳系数。利用近岸海浪模拟(SWAN)在湖上生成模拟波浪。由于上风岸的波浪最小,风减水提供了消除波浪增水作为一个影响因素(的条件)。研究发现,当使用无波浪的典型开阔海洋公式来计算拖曳系数时,模型结果显著低估了风减水和风暴潮。波浪对风减水和风暴潮的贡献为34.7%。分散的湖冰还使有效拖曳系数增加了1.1倍。