Suppr超能文献

通过异源表达 Ralstonia eutropha SH 操纵子提高大肠杆菌产氢的代谢能力。

Increasing the metabolic capacity of Escherichia coli for hydrogen production through heterologous expression of the Ralstonia eutropha SH operon.

机构信息

Département de Microbiologie et Immunologie, Université de Montréal, CP 6128 Succursale Centre-ville, Montréal, Québec, Canada H3C 3J7.

出版信息

Biotechnol Biofuels. 2013 Aug 26;6(1):122. doi: 10.1186/1754-6834-6-122.

Abstract

BACKGROUND

Fermentative hydrogen production is an attractive means for the sustainable production of this future energy carrier but is hampered by low yields. One possible solution is to create, using metabolic engineering, strains which can bypass the normal metabolic limits to substrate conversion to hydrogen. Escherichia coli can degrade a variety of sugars to hydrogen but can only convert electrons available at the pyruvate node to hydrogen, and is unable to use the electrons available in NADH generated during glycolysis.

RESULTS

Here, the heterologous expression of the soluble [NiFe] hydrogenase from Ralstonia eutropha H16 (the SH hydrogenase) was used to demonstrate the introduction of a pathway capable of deriving substantial hydrogen from the NADH generated by fermentation. Successful expression was demonstrated by in vitro assay of enzyme activity. Moreover, expression of SH restored anaerobic growth on glucose to adhE strains, normally blocked for growth due to the inability to re-oxidize NADH. Measurement of in vivo hydrogen production showed that several metabolically engineered strains were capable of using the SH hydrogenase to derive 2 mol H2 per mol of glucose consumed, close to the theoretical maximum.

CONCLUSION

Previous introduction of heterologous [NiFe] hydrogenase in E. coli led to NAD(P)H dependent activity, but hydrogen production levels were very low. Here we have shown for the first time substantial in vivo hydrogen production by a heterologously expressed [NiFe] hydrogenase, the soluble NAD-dependent H2ase of R. eutropha (SH hydrogenase). This hydrogenase was able to couple metabolically generated NADH to hydrogen production, thus rescuing an alcohol dehydrogenase (adhE) mutant. This enlarges the range of metabolism available for hydrogen production, thus potentially opening the door to the creation of greatly improved hydrogen production. Strategies for further increasing yields should revolve around making additional NADH available.

摘要

背景

发酵产氢是可持续生产这种未来能源载体的一种有吸引力的手段,但产量低是其面临的一个主要障碍。一种可能的解决方案是通过代谢工程创建能够绕过底物向氢转化的正常代谢限制的菌株。大肠杆菌可以将各种糖降解为氢,但只能将丙酮酸节点上可用的电子转化为氢,并且无法利用在糖酵解过程中产生的 NADH 中生成的电子。

结果

在这里,通过异源表达来自 Ralstonia eutropha H16 的可溶性[NiFe]氢化酶(SH 氢化酶),证明了引入了一条能够从发酵过程中产生的 NADH 中获得大量氢气的途径。通过体外酶活性测定证明了成功表达。此外,SH 的表达恢复了 adhE 菌株的厌氧葡萄糖生长,adhE 菌株由于无法重新氧化 NADH 而无法生长。体内产氢测量表明,几种代谢工程菌株能够利用 SH 氢化酶从消耗的每摩尔葡萄糖中获得 2 摩尔 H2,接近理论最大值。

结论

以前在大肠杆菌中引入异源[NiFe]氢化酶会导致 NAD(P)H 依赖性活性,但产氢水平非常低。在这里,我们首次展示了通过异源表达的[NiFe]氢化酶——来自 R. eutropha 的可溶性 NAD 依赖性 H2ase(SH 氢化酶)在体内产生大量氢气。这种氢化酶能够将代谢生成的 NADH 与氢气产生偶联,从而拯救了一种醇脱氢酶(adhE)突变体。这扩大了可用于产氢的代谢范围,从而有可能为创造大大提高的产氢能力打开大门。进一步提高产量的策略应该围绕着提供更多的 NADH。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b299/3765991/792fd88bad6c/1754-6834-6-122-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验