Chair of Chemistry of Biogenic Resources, TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, 94315, Straubing, Germany.
RWTH Universität Aachen, Institute of Applied Microbiology, Worringerweg 1, 52074, Aachen, Germany.
Nat Commun. 2023 May 31;14(1):2693. doi: 10.1038/s41467-023-38227-9.
Biocatalysis-based synthesis can provide a sustainable and clean platform for producing chemicals. Many oxidative biocatalytic routes require the cofactor NAD as an electron acceptor. To date, NADH oxidase (NOX) remains the most widely applied system for NAD regeneration. However, its dependence on O implies various technical challenges in terms of O supply, solubility, and mass transfer. Here, we present the suitability of a NAD regeneration system in vitro based on H evolution. The efficiency of the hydrogenase-based system is demonstrated by integrating it into a multi-enzymatic cascade to produce ketoacids from sugars. The total NAD recycled using the hydrogenase system outperforms NOX in all different setups reaching up to 44,000 mol per mol enzyme. This system proves to be scalable and superior to NOX in terms of technical simplicity, flexibility, and total output. Furthermore, the system produces only green H as a by-product even in the presence of O.
基于生物催化的合成可以为化学品的生产提供一个可持续和清洁的平台。许多氧化生物催化途径需要辅酶 NAD 作为电子受体。迄今为止,NADH 氧化酶 (NOX) 仍然是最广泛应用的 NAD 再生系统。然而,它对 O 的依赖在 O 供应、溶解度和质量传递方面带来了各种技术挑战。在这里,我们展示了基于 H 析出的体外 NAD 再生系统的适用性。通过将其整合到多酶级联反应中,从糖中生产酮酸,证明了基于氢化酶的系统的效率。使用氢化酶系统回收的总 NAD 比在所有不同设置中的 NOX 都要好,达到每摩尔酶 44,000 毫摩尔。该系统在技术简单性、灵活性和总产量方面被证明是可扩展的,并且优于 NOX。此外,即使在 O 存在的情况下,该系统也只产生绿色 H 作为副产物。