School of Chemical and Material Engineering, Jiangnan University, Wuxi, jiangsu 214122, China.
J Colloid Interface Sci. 2013 Nov 1;409:52-8. doi: 10.1016/j.jcis.2013.07.018. Epub 2013 Jul 27.
Here, we report a scalable bottom-up approach for fabricating periodic arrays of metal nanorings and nanocrescents. Wafer-scale monolayer silica colloidal crystals with an unusual non-close-packed structure prepared by a simple and rapid spin-coating technology are used as both etching and shadowing masks to create nanoring-shaped trenches in between templated polymer posts and sacrificial nanoholes. Directional deposition of metals in the trenches followed by liftoff of the polymer posts and the sacrificial nanoholes results in forming ordered metal nanorings. The inner and outer radii of the final nanorings are determined by the sizes of the templated polymer posts and the silica microspheres which can be easily adjusted by tuning the spin-coating and templating conditions. Most importantly, by simply controlling the tilt angle of the substrate toward the directional metal beams, continuous geometric transition from concentric nanorings to eccentric nanorings to nanocrescents can be achieved. This new colloidal templating approach is compatible with standard semiconductor microfabrication, promising for mass-production and on-chip integration of periodic nanorings and nanocrescents for a wide spectrum of technological applications ranging from nanooptical devices and ultrasensitive biosensing to magnetic memories and logic circuits.
在这里,我们报告了一种可扩展的自下而上的方法,用于制造周期性的金属纳米环和纳米芽阵列。我们使用通过简单快速的旋涂技术制备的具有不寻常的非密堆积结构的晶圆级单层二氧化硅胶体晶体作为刻蚀掩模和阴影掩模,在模板聚合物柱和牺牲纳米孔之间制造纳米环形状的沟槽。在沟槽中定向沉积金属,然后去除聚合物柱和牺牲纳米孔,从而形成有序的金属纳米环。最终纳米环的内、外半径由模板聚合物柱和二氧化硅微球的尺寸决定,通过调整旋涂和模板条件可以很容易地进行调整。最重要的是,通过简单地控制基底相对于定向金属束的倾斜角度,可以实现从同心纳米环到偏心纳米环到纳米芽的连续几何过渡。这种新的胶体模板方法与标准半导体微制造兼容,有望大规模生产周期性纳米环和纳米芽,并将其集成到各种技术应用中,从纳米光学器件和超灵敏生物传感到磁存储器和逻辑电路。