Instistuto de Biologia, Universidade Federal da Bahia, Ondina, Salvador, Bahia, Brazil.
Philos Trans R Soc Lond B Biol Sci. 2013 Aug 26;368(1627):20120447. doi: 10.1098/rstb.2012.0447. Print 2013.
For many aquatic organisms, olfactory-mediated behaviour is essential to the maintenance of numerous fitness-enhancing activities, including foraging, reproduction and predator avoidance. Studies in both freshwater and marine ecosystems have demonstrated significant impacts of anthropogenic acidification on olfactory abilities of fish and macroinvertebrates, leading to impaired behavioural responses, with potentially far-reaching consequences to population dynamics and community structure. Whereas the ecological impacts of impaired olfactory-mediated behaviour may be similar between freshwater and marine ecosystems, the underlying mechanisms are quite distinct. In acidified freshwater, molecular change to chemical cues along with reduced olfaction sensitivity appear to be the primary causes of olfactory-mediated behavioural impairment. By contrast, experiments simulating future ocean acidification suggest that interference of high CO2 with brain neurotransmitter function is the primary cause for olfactory-mediated behavioural impairment in fish. Different physico-chemical characteristics between marine and freshwater systems are probably responsible for these distinct mechanisms of impairment, which, under globally rising CO2 levels, may lead to strikingly different consequences to olfaction. While fluctuations in pH may occur in both freshwater and marine ecosystems, marine habitat will remain alkaline despite future ocean acidification caused by globally rising CO2 levels. In this synthesis, we argue that ecosystem-specific mechanisms affecting olfaction need to be considered for effective management and conservation practices.
对于许多水生生物来说,嗅觉介导的行为对于维持许多增强适应性的活动至关重要,包括觅食、繁殖和避免捕食者。淡水和海洋生态系统的研究表明,人为酸化对鱼类和大型无脊椎动物的嗅觉能力有显著影响,导致行为反应受损,对种群动态和群落结构可能产生深远的影响。虽然嗅觉介导的行为受损的生态影响在淡水和海洋生态系统中可能相似,但潜在的机制却截然不同。在酸化的淡水中,化学信号的分子变化以及嗅觉敏感度的降低似乎是嗅觉介导的行为受损的主要原因。相比之下,模拟未来海洋酸化的实验表明,高 CO2 干扰大脑神经递质功能是鱼类嗅觉介导的行为受损的主要原因。海洋和淡水系统之间不同的物理化学特性可能是这些不同的损伤机制的原因,在全球 CO2 水平上升的情况下,这可能会导致嗅觉产生截然不同的后果。虽然 pH 值的波动可能发生在淡水和海洋生态系统中,但即使全球 CO2 水平上升导致未来海洋酸化,海洋栖息地仍将保持碱性。在本综述中,我们认为需要考虑影响嗅觉的特定于生态系统的机制,以进行有效的管理和保护实践。