Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara California, United States of America.
PLoS One. 2011;6(12):e28983. doi: 10.1371/journal.pone.0028983. Epub 2011 Dec 19.
The effect of Ocean Acidification (OA) on marine biota is quasi-predictable at best. While perturbation studies, in the form of incubations under elevated pCO(2), reveal sensitivities and responses of individual species, one missing link in the OA story results from a chronic lack of pH data specific to a given species' natural habitat. Here, we present a compilation of continuous, high-resolution time series of upper ocean pH, collected using autonomous sensors, over a variety of ecosystems ranging from polar to tropical, open-ocean to coastal, kelp forest to coral reef. These observations reveal a continuum of month-long pH variability with standard deviations from 0.004 to 0.277 and ranges spanning 0.024 to 1.430 pH units. The nature of the observed variability was also highly site-dependent, with characteristic diel, semi-diurnal, and stochastic patterns of varying amplitudes. These biome-specific pH signatures disclose current levels of exposure to both high and low dissolved CO(2), often demonstrating that resident organisms are already experiencing pH regimes that are not predicted until 2100. Our data provide a first step toward crystallizing the biophysical link between environmental history of pH exposure and physiological resilience of marine organisms to fluctuations in seawater CO(2). Knowledge of this spatial and temporal variation in seawater chemistry allows us to improve the design of OA experiments: we can test organisms with a priori expectations of their tolerance guardrails, based on their natural range of exposure. Such hypothesis-testing will provide a deeper understanding of the effects of OA. Both intuitively simple to understand and powerfully informative, these and similar comparative time series can help guide management efforts to identify areas of marine habitat that can serve as refugia to acidification as well as areas that are particularly vulnerable to future ocean change.
海洋酸化(OA)对海洋生物群的影响充其量是可以预测的。虽然通过升高 pCO2 的培养进行的扰动研究揭示了个别物种的敏感性和反应,但 OA 故事中的一个缺失环节是由于缺乏特定于给定物种自然栖息地的 pH 数据。在这里,我们展示了一系列使用自主传感器在从极地到热带、开阔海域到沿海、巨藻林到珊瑚礁等各种生态系统中收集的上层海洋 pH 的连续、高分辨率时间序列。这些观测结果揭示了长达一个月的 pH 可变性的连续体,其标准偏差为 0.004 至 0.277,范围跨越 0.024 至 1.430 pH 单位。观测到的可变性的性质也高度依赖于地点,具有不同幅度的特征日、半日和随机模式。这些生物群落特异性的 pH 特征揭示了当前暴露于高和低溶解 CO2 的水平,通常表明居住生物已经经历了直到 2100 年才预测到的 pH 范围。我们的数据为确定 pH 暴露的环境历史与海洋生物对海水 CO2 波动的生理弹性之间的生物物理联系迈出了第一步。了解海水化学的这种时空变化使我们能够改进 OA 实验的设计:我们可以根据其自然暴露范围,对具有耐受护栏预期的生物体进行测试。这种假设检验将提供对 OA 影响的更深入理解。这些和类似的比较时间序列直观简单易懂,信息丰富,它们可以帮助指导管理工作,以确定可以作为酸化避难所的海洋生境区域,以及特别容易受到未来海洋变化影响的区域。