Romberg Tiburon Center for Environmental Studies, San Francisco State University, Tiburon, CA 94920, USA.
Philos Trans R Soc Lond B Biol Sci. 2013 Aug 26;368(1627):20130049. doi: 10.1098/rstb.2013.0049. Print 2013.
Increased atmospheric pCO2 is expected to render future oceans warmer and more acidic than they are at present. Calcifying organisms such as coccolithophores that fix and export carbon into the deep sea provide feedbacks to increasing atmospheric pCO2. Acclimation experiments suggest negative effects of warming and acidification on coccolithophore calcification, but the ability of these organisms to adapt to future environmental conditions is not well understood. Here, we tested the combined effect of pCO2 and temperature on the coccolithophore Emiliania huxleyi over more than 700 generations. Cells increased inorganic carbon content and calcification rate under warm and acidified conditions compared with ambient conditions, whereas organic carbon content and primary production did not show any change. In contrast to findings from short-term experiments, our results suggest that long-term acclimation or adaptation could change, or even reverse, negative calcification responses in E. huxleyi and its feedback to the global carbon cycle. Genome-wide profiles of gene expression using RNA-seq revealed that genes thought to be essential for calcification are not those that are most strongly differentially expressed under long-term exposure to future ocean conditions. Rather, differentially expressed genes observed here represent new targets to study responses to ocean acidification and warming.
大气中二氧化碳浓度的增加预计将使未来的海洋比现在更温暖、更酸化。固定并将碳输出到深海的钙化生物,如颗石藻,为大气中二氧化碳浓度的增加提供了反馈。适应实验表明,变暖和酸化对颗石藻钙化有负面影响,但这些生物适应未来环境条件的能力还不是很清楚。在这里,我们在超过 700 代的时间里测试了二氧化碳分压和温度对 Emiliania huxleyi 颗石藻的综合影响。与环境条件相比,细胞在温暖和酸化条件下增加了无机碳含量和钙化速率,而有机碳含量和初级生产力没有任何变化。与短期实验的结果相反,我们的结果表明,长期适应或适应可能会改变,甚至逆转 E. huxleyi 的负钙化反应及其对全球碳循环的反馈。使用 RNA-seq 的全基因组基因表达谱显示,那些被认为对钙化至关重要的基因,并不是在长期暴露于未来海洋条件下表达差异最显著的基因。相反,这里观察到的差异表达基因代表了研究海洋酸化和变暖反应的新目标。