Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, Maryland, USA.
J Virol. 2013 Nov;87(22):11987-2002. doi: 10.1128/JVI.02005-13. Epub 2013 Aug 28.
The Pea enation mosaic virus (PEMV) 3' translational enhancer, known as the kissing-loop T-shaped structure (kl-TSS), binds to 40S subunits, 60S subunits, and 80S ribosomes, whereas the Turnip crinkle virus (TCV) TSS binds only to 60S subunits and 80S ribosomes. Using electrophoretic mobility gel shift assay (EMSA)-based competition assays, the kl-TSS was found to occupy a different site in the ribosome than the P-site-binding TCV TSS, suggesting that these two TSS employ different mechanisms for enhancing translation. The kl-TSS also engages in a stable, long-distance RNA-RNA kissing-loop interaction with a 12-bp 5'-coding-region hairpin that does not alter the structure of the kl-TSS as revealed by molecular dynamics simulations. Addition of the kl-TSS in trans to a luciferase reporter construct containing either wild-type or mutant 5' and 3' PEMV sequences suppressed translation, suggesting that the kl-TSS is required in cis to function, and both ribosome-binding and RNA interaction activities of the kl-TSS contributed to translational inhibition. Addition of the kl-TSS was more detrimental for translation than an adjacent eIF4E-binding 3' translational enhancer known as the PTE, suggesting that the PTE may support the ribosome-binding function of the kl-TSS. Results of in-line RNA structure probing, ribosome filter binding, and high-throughput selective 2'-hydroxyl acylation analyzed by primer extension (hSHAPE) of rRNAs within bound ribosomes suggest that kl-TSS binding to ribosomes and binding to the 5' hairpin are compatible activities. These results suggest a model whereby posttermination ribosomes/ribosomal subunits bind to the kl-TSS and are delivered to the 5' end of the genome via the associated RNA-RNA interaction, which enhances the rate of translation reinitiation.
豌豆镶嵌病毒(PEMV)3'翻译增强子,称为亲吻环 T 形结构(kl-TSS),与 40S 亚基、60S 亚基和 80S 核糖体结合,而芜菁皱缩病毒(TCV)TSS 仅与 60S 亚基和 80S 核糖体结合。使用电泳迁移率凝胶阻滞分析(EMSA)为基础的竞争分析,发现 kl-TSS 在核糖体上占据的位置与 P 位结合的 TCV TSS 不同,这表明这两个 TSS 采用不同的机制增强翻译。kl-TSS 还与一个 12 个碱基的 5'编码区发夹形成稳定的远距离 RNA-RNA 亲吻环相互作用,该发夹不会改变分子动力学模拟所揭示的 kl-TSS 结构。kl-TSS 在反式添加到含有野生型或突变 5'和 3'PEMV 序列的荧光素酶报告构建体中抑制翻译,表明 kl-TSS 在顺式中需要发挥作用,并且 kl-TSS 的核糖体结合和 RNA 相互作用活性都有助于翻译抑制。kl-TSS 的添加比对相邻的 eIF4E 结合 3'翻译增强子(称为 PTE)更不利于翻译,这表明 PTE 可能支持 kl-TSS 的核糖体结合功能。在结合核糖体内的 rRNA 进行在线 RNA 结构探测、核糖体过滤结合和高通量选择性 2'-羟基乙酰化分析(hSHAPE)的结果表明,kl-TSS 与核糖体结合和与 5'发夹结合是兼容的活性。这些结果表明了一种模型,即终止后核糖体/核糖体亚基结合到 kl-TSS 上,并通过相关的 RNA-RNA 相互作用被递送到基因组的 5'端,从而增强翻译起始的速率。