H H Wills Physics Laboratory, University of Bristol, Bristol, UK.
Opt Lett. 2013 Sep 1;38(17):3325-8. doi: 10.1364/OL.38.003325.
We describe a new class of propagation-invariant light beams with Fourier transform given by an eigenfunction of the quantum mechanical pendulum. These beams, whose spectra (restricted to a circle) are doubly periodic Mathieu functions in azimuth, depend on a field strength parameter. When the parameter is zero, pendulum beams are Bessel beams, and as the parameter approaches infinity, they resemble transversely propagating one-dimensional Gaussian wave packets (Gaussian beam-beams). Pendulum beams are the eigenfunctions of an operator that interpolates between the squared angular momentum operator and the linear momentum operator. The analysis reveals connections with Mathieu beams, and insight into the paraxial approximation.
我们描述了一类新的传播不变光束,其傅里叶变换由量子力学摆的本征函数给出。这些光束的光谱(限制在一个圆内)在方位角上是双周期 Mathieu 函数,取决于场强参数。当参数为零时,摆光束是贝塞尔光束,而当参数接近无穷大时,它们类似于横向传播的一维高斯波包(高斯光束-光束)。摆光束是一个算子的本征函数,该算子在角动量平方算子和线性动量算子之间进行插值。该分析揭示了与 Mathieu 光束的联系,并深入了解了傍轴近似。