Biomedical Engineering Program, graduate Institute of Applied Science and Technology, and Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taiwan.
Int J Nanomedicine. 2013;8:3161-9. doi: 10.2147/IJN.S49972. Epub 2013 Aug 19.
Dengue virus results in dengue fever or severe dengue hemorrhagic fever/dengue shock syndrome in humans. The purpose of this work was to develop an effective antidengue virus delivery system, by designing poly (dl-lactic-co-glycolic) acid/polyethylene glycol (PLGA/PEG) microspheres using a double-emulsion solvent extraction method, for vaccination therapy based on locally and continuously sustained biological activity. Nonstructural protein 1 (NS1) in deoxyribonucleic acid (DNA) vaccine-loaded PLGA/PEG microspheres exhibited a high loading capacity (4.5% w/w), yield (85.2%), and entrapment efficiency (39%), the mean particle size 4.8 μm, and a controlled in vitro release profile with a low initial burst (18.5%), lag time (4 days), and continued released protein over 70 days. The distribution of protein on the microspheres surface, outer layer, and core were 3.0%, 28.5%, and 60.7%, respectively. A release rate was noticed to be 1.07 μg protein/mg microspheres/day of protein release, maintained for 42 days. The cumulative release amount at Days 1, 28, and 42 was 18.5, 53.7, and 62.66 μg protein/mg microspheres, respectively. The dengue virus challenge in mice test, in which mice received one dose of 20 μg NS1 protein content of microspheres, in comparison with NS1 protein in Al(OH)3 or PBS solution, was evaluated after intramuscular immunization of BALB/c mice. The study results show that the greatest survival was observed in the group of mice immunized with NS1 protein-loaded PLGA/PEG microspheres (100%). In vivo vaccination studies also demonstrated that NS1 protein-loaded PLGA/PEG microspheres had a protective ability; its steady-state immune protection in rat plasma changed from 4,443 ± 1,384 pg/mL to 10,697 ± 3,197 pg/mL, which was 2.5-fold higher than that observed for dengue virus in Al(OH)3 at 21 days. These findings strongly suggest that NS1 protein-loaded PLGA/PEG microspheres offer a new therapeutic strategy in optimizing the vaccine incorporation and delivery properties of these potential vaccine targeting carriers.
登革热病毒会导致人类患登革热或严重登革出血热/登革休克综合征。本工作旨在通过双乳化溶剂萃取法设计聚(DL-丙交酯-共-乙交酯)/聚乙二醇(PLGA/PEG)微球,构建一种有效的抗登革病毒递药系统,用于基于局部和持续持续生物活性的疫苗接种治疗。负载 DNA 疫苗的非结构蛋白 1(NS1)的 PLGA/PEG 微球的载药量(4.5%w/w)、产率(85.2%)和包封效率(39%)较高,平均粒径为 4.8μm,具有较低的初始突释(18.5%)、迟滞时间(4 天)和超过 70 天的持续释放蛋白的体外释放曲线。蛋白在微球表面、外层和核心的分布分别为 3.0%、28.5%和 60.7%。在第 1、28 和 42 天,蛋白释放率分别为 1.07μg 蛋白/mg 微球/天、1.07μg 蛋白/mg 微球/天和 0.54μg 蛋白/mg 微球/天。在登革热病毒挑战的小鼠试验中,将 NS1 蛋白负载的微球(20μg NS1 蛋白含量),与 Al(OH)3 或 PBS 溶液中的 NS1 蛋白进行比较,在 BALB/c 小鼠肌肉免疫后进行评估。研究结果表明,在接受 NS1 蛋白负载 PLGA/PEG 微球免疫的小鼠中观察到最大的存活率(100%)。体内疫苗接种研究还表明,负载 NS1 蛋白的 PLGA/PEG 微球具有保护能力;其在大鼠血浆中的稳态免疫保护从 4443±1384pg/mL 增加到 10697±3197pg/mL,与 21 天在 Al(OH)3 中的登革病毒相比,增加了 2.5 倍。这些发现强烈表明,负载 NS1 蛋白的 PLGA/PEG 微球为优化这些潜在疫苗靶向载体的疫苗掺入和递药特性提供了一种新的治疗策略。