文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于开发下一代疫苗的纳米-微粒平台

Nano-Microparticle Platforms in Developing Next-Generation Vaccines.

作者信息

Cappellano Giuseppe, Abreu Hugo, Casale Chiara, Dianzani Umberto, Chiocchetti Annalisa

机构信息

Dipartimento di Scienze della Salute, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, 28100 Novara, Italy.

Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Università del Piemonte Orientale, 28100 Novara, Italy.

出版信息

Vaccines (Basel). 2021 Jun 5;9(6):606. doi: 10.3390/vaccines9060606.


DOI:10.3390/vaccines9060606
PMID:34198865
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8228777/
Abstract

The first vaccines ever made were based on live-attenuated or inactivated pathogens, either whole cells or fragments. Although these vaccines required the co-administration of antigens with adjuvants to induce a strong humoral response, they could only elicit a poor CD8 T-cell response. In contrast, next-generation nano/microparticle-based vaccines offer several advantages over traditional ones because they can induce a more potent CD8 T-cell response and, at the same time, are ideal carriers for proteins, adjuvants, and nucleic acids. The fact that these nanocarriers can be loaded with molecules able to modulate the immune response by inducing different effector functions and regulatory activities makes them ideal tools for inverse vaccination, whose goal is to shut down the immune response in autoimmune diseases. Poly (lactic-co-glycolic acid) (PLGA) and liposomes are biocompatible materials approved by the Food and Drug Administration (FDA) for clinical use and are, therefore, suitable for nanoparticle-based vaccines. Recently, another candidate platform for innovative vaccines based on extracellular vesicles (EVs) has been shown to efficiently co-deliver antigens and adjuvants. This review will discuss the potential use of PLGA-NPs, liposomes, and EVs as carriers of peptides, adjuvants, mRNA, and DNA for the development of next-generation vaccines against endemic and emerging viruses in light of the recent COVID-19 pandemic.

摘要

有史以来制造的第一批疫苗是基于减毒活病原体或灭活病原体,即全细胞或片段。尽管这些疫苗需要将抗原与佐剂共同给药以诱导强烈的体液反应,但它们只能引发较弱的CD8 T细胞反应。相比之下,下一代基于纳米/微粒的疫苗比传统疫苗具有几个优势,因为它们可以诱导更强的CD8 T细胞反应,同时是蛋白质、佐剂和核酸的理想载体。这些纳米载体可以装载能够通过诱导不同效应功能和调节活性来调节免疫反应的分子,这一事实使其成为反向疫苗接种的理想工具,反向疫苗接种的目标是在自身免疫性疾病中关闭免疫反应。聚(乳酸-乙醇酸)(PLGA)和脂质体是美国食品药品监督管理局(FDA)批准用于临床的生物相容性材料,因此适用于基于纳米颗粒的疫苗。最近,另一种基于细胞外囊泡(EVs)的创新疫苗候选平台已被证明能有效地共同递送抗原和佐剂。鉴于最近的COVID-19大流行,本综述将讨论PLGA纳米颗粒、脂质体和EVs作为肽、佐剂、mRNA和DNA载体在开发针对地方性和新出现病毒的下一代疫苗方面的潜在用途。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/739c/8228777/f2d8a35a0e61/vaccines-09-00606-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/739c/8228777/f2d8a35a0e61/vaccines-09-00606-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/739c/8228777/f2d8a35a0e61/vaccines-09-00606-g001.jpg

相似文献

[1]
Nano-Microparticle Platforms in Developing Next-Generation Vaccines.

Vaccines (Basel). 2021-6-5

[2]
Exploiting PLGA-Based Biocompatible Nanoparticles for Next-Generation Tolerogenic Vaccines against Autoimmune Disease.

Int J Mol Sci. 2019-1-8

[3]
Adjuvanting a Simian Immunodeficiency Virus Vaccine with Toll-Like Receptor Ligands Encapsulated in Nanoparticles Induces Persistent Antibody Responses and Enhanced Protection in TRIM5α Restrictive Macaques.

J Virol. 2017-1-31

[4]
PLGA (85:15) nanoparticle based delivery of rL7/L12 ribosomal protein in mice protects against Brucella abortus 544 infection: A promising alternate to traditional adjuvants.

Mol Immunol. 2015-12

[5]
pH-Responsive Poly(D,L-lactic-co-glycolic acid) Nanoparticles with Rapid Antigen Release Behavior Promote Immune Response.

ACS Nano. 2015-4-24

[6]
Subcutaneous inverse vaccination with PLGA particles loaded with a MOG peptide and IL-10 decreases the severity of experimental autoimmune encephalomyelitis.

Vaccine. 2014-8-20

[7]
Idiotypic vaccination for B-cell malignancies as a model for therapeutic cancer vaccines: from prototype protein to second generation vaccines.

Haematologica. 2002-9

[8]
Biodegradable nanoparticle delivery of inactivated swine influenza virus vaccine provides heterologous cell-mediated immune response in pigs.

J Control Release. 2017-1-2

[9]
Identification of BALB/c Immune Markers Correlated with a Partial Protection to Leishmania infantum after Vaccination with a Rationally Designed Multi-epitope Cysteine Protease A Peptide-Based Nanovaccine.

PLoS Negl Trop Dis. 2017-1-23

[10]
Liposome-Based Adjuvants for Subunit Vaccines: Formulation Strategies for Subunit Antigens and Immunostimulators.

Pharmaceutics. 2016-3-10

引用本文的文献

[1]
Biocontrol and Nanotechnology Strategies for Postharvest Disease Management in Fruits and Vegetables: A Comprehensive Review.

Foods. 2025-8-10

[2]
Inverse Vaccination for Autoimmune Diseases: Insights into the Role of B Lymphocytes.

Cells. 2025-7-16

[3]
Tumor cell membrane-based vaccines: A potential boost for cancer immunotherapy.

Exploration (Beijing). 2024-3-28

[4]
The Major Role of T Regulatory Cells in the Efficiency of Vaccination in General and Immunocompromised Populations: A Review.

Vaccines (Basel). 2024-8-30

[5]
Gingerol nanoparticles attenuate complete Freund adjuvant-induced arthritis in rats via targeting the RANKL/OPG signaling pathway.

Inflammopharmacology. 2024-10

[6]
Current status of immunological therapies for rheumatoid arthritis with a focus on antigen-specific therapeutic vaccines.

Front Immunol. 2024

[7]
Diverse drug delivery systems for the enhancement of cancer immunotherapy: an overview.

Front Immunol. 2024

[8]
Laponite Lights Calcium Flickers by Reprogramming Lysosomes to Steer DC Migration for An Effective Antiviral CD8 T-Cell Response.

Adv Sci (Weinh). 2023-10

[9]
Use of Poly Lactic-co-glycolic Acid Nano and Micro Particles in the Delivery of Drugs Modulating Different Phases of Inflammation.

Pharmaceutics. 2023-6-20

[10]
Nanostructures for prevention, diagnosis, and treatment of viral respiratory infections: from influenza virus to SARS-CoV-2 variants.

J Nanobiotechnology. 2023-6-21

本文引用的文献

[1]
Circulating Exosomes Are Strongly Involved in SARS-CoV-2 Infection.

Front Mol Biosci. 2021-2-22

[2]
COVID-19 mRNA vaccines (Pfizer-BioNTech and Moderna) in patients with multiple sclerosis: a statement by a working group convened by the Section of Multiple Sclerosis and Neuroimmunology of the Polish Neurological Society.

Neurol Neurochir Pol. 2021

[3]
Promising Extracellular Vesicle-Based Vaccines against Viruses, Including SARS-CoV-2.

Biology (Basel). 2021-1-27

[4]
COVID-19 vaccines: where we stand and challenges ahead.

Cell Death Differ. 2021-2

[5]
PEGylation enables subcutaneously administered nanoparticles to induce antigen-specific immune tolerance.

J Control Release. 2021-3-10

[6]
Circulating Platelet-Derived Extracellular Vesicles Are a Hallmark of Sars-Cov-2 Infection.

Cells. 2021-1-7

[7]
Adjuvanted SARS-CoV-2 spike protein elicits neutralizing antibodies and CD4 T cell responses after a single immunization in mice.

EBioMedicine. 2021-1

[8]
Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine.

N Engl J Med. 2021-2-4

[9]
Oxford-AstraZeneca COVID-19 vaccine efficacy.

Lancet. 2021-1-9

[10]
Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine.

N Engl J Med. 2020-12-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索