Department of Biology, Wilkes University, Wilkes-Barre, Pennsylvania, United States of America ; Department of Mathematics and Computer Science, Wilkes University, Wilkes-Barre, Pennsylvania, United States of America.
PLoS One. 2013 Aug 26;8(8):e71947. doi: 10.1371/journal.pone.0071947. eCollection 2013.
RNA molecules are important cellular components involved in many fundamental biological processes. Understanding the mechanisms behind their functions requires knowledge of their tertiary structures. Though computational RNA folding approaches exist, they often require manual manipulation and expert intuition; predicting global long-range tertiary contacts remains challenging. Here we develop a computational approach and associated program module (RNAJAG) to predict helical arrangements/topologies in RNA junctions. Our method has two components: junction topology prediction and graph modeling. First, junction topologies are determined by a data mining approach from a given secondary structure of the target RNAs; second, the predicted topology is used to construct a tree graph consistent with geometric preferences analyzed from solved RNAs. The predicted graphs, which model the helical arrangements of RNA junctions for a large set of 200 junctions using a cross validation procedure, yield fairly good representations compared to the helical configurations in native RNAs, and can be further used to develop all-atom models as we show for two examples. Because junctions are among the most complex structural elements in RNA, this work advances folding structure prediction methods of large RNAs. The RNAJAG module is available to academic users upon request.
RNA 分子是参与许多基本生物过程的重要细胞成分。要了解其功能背后的机制,就需要了解它们的三级结构。虽然存在计算 RNA 折叠方法,但它们通常需要手动操作和专家直觉;预测全局长程三级接触仍然具有挑战性。在这里,我们开发了一种计算方法和相关的程序模块(RNAJAG)来预测 RNA 连接点的螺旋排列/拓扑结构。我们的方法有两个组成部分:连接点拓扑预测和图形建模。首先,通过从目标 RNA 的给定二级结构进行数据挖掘来确定连接点拓扑;其次,使用从已解决的 RNA 中分析的几何偏好来构建与预测拓扑一致的树图。预测的图形,使用交叉验证程序对 200 个连接点的大集合的 RNA 连接点的螺旋排列进行建模,与天然 RNA 中的螺旋构象相比,产生了相当好的表示,并且可以进一步用于开发全原子模型,我们将针对两个示例进行展示。由于连接点是 RNA 中最复杂的结构元素之一,因此这项工作推进了大型 RNA 的折叠结构预测方法。RNAJAG 模块可应学术用户的要求提供。