Kim Namhee, Petingi Louis, Schlick Tamar
New York University Department of Chemistry Courant Institute of Mathematical Sciences 251 Mercer Street New York, NY 10012, USA.
College of Staten Island City University of New York Department of Computer Science 2800 Victory Boulevard Staten Island, NY 10314, USA
WSEAS Trans Math. 2013 Sep;9(12):941-955.
An introduction into the usage of graph or network theory tools for the study of RNA molecules is presented. By using vertices and edges to define RNA secondary structures as tree and dual graphs, we can enumerate, predict, and design RNA topologies. Graph connectivity and associated Laplacian eigenvalues relate to biological properties of RNA and help understand RNA motifs as well as build, by computational design, various RNA target structures. Importantly, graph theoretical representations of RNAs reduce drastically the conformational space size and therefore simplify modeling and prediction tasks. Ongoing challenges remain regarding general RNA design, representation of RNA pseudoknots, and tertiary structure prediction. Thus, developments in network theory may help advance RNA biology.
本文介绍了用于研究RNA分子的图论或网络理论工具的用法。通过使用顶点和边将RNA二级结构定义为树图和对偶图,我们可以枚举、预测和设计RNA拓扑结构。图的连通性和相关的拉普拉斯特征值与RNA的生物学特性相关,有助于理解RNA基序,并通过计算设计构建各种RNA靶标结构。重要的是,RNA的图论表示极大地减小了构象空间的大小,从而简化了建模和预测任务。在一般RNA设计、RNA假结的表示和三级结构预测方面仍然存在挑战。因此,网络理论的发展可能有助于推动RNA生物学的进步。