Suppr超能文献

丁酰胆碱酯酶催化海洛因水解的基本反应途径和自由能谱。

Fundamental reaction pathway and free energy profile for butyrylcholinesterase-catalyzed hydrolysis of heroin.

机构信息

State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science , Zhongshan Road 457, Dalian 116023, P. R. China.

出版信息

Biochemistry. 2013 Sep 17;52(37):6467-79. doi: 10.1021/bi400709v. Epub 2013 Aug 30.

Abstract

The pharmacological function of heroin requires an activation process that transforms heroin into 6-monoacetylmorphine (6-MAM), which is the most active form. The primary enzyme responsible for this activation process in human plasma is butyrylcholinesterase (BChE). The detailed reaction pathway of the activation process via BChE-catalyzed hydrolysis has been explored computationally, for the first time, in this study via molecular dynamics simulation and first-principles quantum mechanical/molecular mechanical free energy calculations. It has been demonstrated that the whole reaction process includes acylation and deacylation stages. The acylation consists of two reaction steps, i.e., the nucleophilic attack on the carbonyl carbon of the 3-acetyl group of heroin by the hydroxyl oxygen of the Ser198 side chain and the dissociation of 6-MAM. The deacylation also consists of two reaction steps, i.e., the nucleophilic attack on the carbonyl carbon of the acyl-enzyme intermediate by a water molecule and the dissociation of the acetic acid from Ser198. The calculated free energy profile reveals that the second transition state (TS2) should be rate-determining. The structural analysis reveals that the oxyanion hole of BChE plays an important role in the stabilization of rate-determining TS2. The free energy barrier (15.9 ± 0.2 or 16.1 ± 0.2 kcal/mol) calculated for the rate-determining step is in good agreement with the experimentally derived activation free energy (~16.2 kcal/mol), suggesting that the mechanistic insights obtained from this computational study are reliable. The obtained structural and mechanistic insights could be valuable for use in the future rational design of a novel therapeutic treatment of heroin abuse.

摘要

海洛因的药理学功能需要一个激活过程,将海洛因转化为 6-单乙酰吗啡(6-MAM),这是最活跃的形式。在人血浆中,负责此激活过程的主要酶是丁酰胆碱酯酶(BChE)。在这项研究中,首次通过分子动力学模拟和第一性原理量子力学/分子力学自由能计算,对 BChE 催化水解的激活过程的详细反应途径进行了计算研究。结果表明,整个反应过程包括酰化和脱酰化阶段。酰化包括两个反应步骤,即海洛因 3-乙酰基上羰基碳被 Ser198 侧链上的羟基氧的亲核攻击和 6-MAM 的解离。脱酰化也包括两个反应步骤,即酰化酶中间体上羰基碳被水分子的亲核攻击和 Ser198 上乙酸的解离。计算出的自由能曲线表明,第二个过渡态(TS2)应该是速率决定步骤。结构分析表明,BChE 的氧阴离子穴在稳定速率决定的 TS2 中起着重要作用。计算出的速率决定步骤的自由能垒(15.9 ± 0.2 或 16.1 ± 0.2 kcal/mol)与实验得出的活化自由能(~16.2 kcal/mol)非常吻合,这表明从这项计算研究中获得的机制见解是可靠的。获得的结构和机制见解可用于未来对海洛因滥用的新型治疗方法的合理设计。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验