Key Laboratory of Pesticide and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China.
J Phys Chem B. 2011 Oct 27;115(42):12208-19. doi: 10.1021/jp205509w. Epub 2011 Oct 5.
As important drug targets for a variety of human diseases, cyclic nucleotide phosphodiesterases (PDEs) are a superfamily of enzymes sharing a similar catalytic site. We have performed pseudobond first-principles quantum mechanical/molecular mechanical-free energy perturbation (QM/MM-FE) and QM/MM-Poisson-Boltzmann surface area (PBSA) calculations to uncover the detailed reaction mechanism for PDE4-catalyzed hydrolysis of adenosine 3',5'-cyclic monophosphate (cAMP). This is the first report on QM/MM reaction-coordinate calculations including the protein environment of any PDE-catalyzed reaction system, demonstrating a unique catalytic reaction mechanism. The QM/MM-FE and QM/MM-PBSA calculations revealed that the PDE4-catalyzed hydrolysis of cAMP consists of two reaction stages: cAMP hydrolysis (stage 1) and bridging hydroxide ion regeneration (stage 2). The stage 1 includes the binding of cAMP in the active site, nucleophilic attack of the bridging hydroxide ion on the phosphorus atom of cAMP, cleavage of O3'-P phosphoesteric bond of cAMP, protonation of the departing O3' atom, and dissociation of hydrolysis product (AMP). The stage 2 includes the binding of solvent water molecules with the metal ions in the active site and regeneration of the bridging hydroxide ion. The dissociation of the hydrolysis product is found to be rate-determining for the enzymatic reaction process. The calculated activation Gibbs free energy of ≥16.0 and reaction free energy of -11.1 kcal/mol are in good agreement with the experimentally derived activation free energy of 16.6 kcal/mol and reaction free energy of -11.5 kcal/mol, suggesting that the catalytic mechanism obtained from this study is reliable and provides a solid base for future rational drug design.
作为多种人类疾病的重要药物靶点,环核苷酸磷酸二酯酶(PDEs)是一个具有相似催化位点的酶超家族。我们进行了伪键第一性原理量子力学/分子力学自由能微扰(QM/MM-FE)和 QM/MM-泊松-玻尔兹曼表面面积(PBSA)计算,以揭示 PDE4 催化水解腺苷 3',5'-环单磷酸(cAMP)的详细反应机制。这是第一个关于包括任何 PDE 催化反应系统的蛋白质环境的 QM/MM 反应坐标计算的报告,展示了独特的催化反应机制。QM/MM-FE 和 QM/MM-PBSA 计算表明,PDE4 催化水解 cAMP 由两个反应阶段组成:cAMP 水解(第 1 阶段)和桥连氢氧离子再生(第 2 阶段)。第 1 阶段包括 cAMP 在活性部位的结合、桥连氢氧离子对 cAMP 磷原子的亲核攻击、cAMP 的 O3'-P 磷酸酯键的断裂、离去 O3'原子的质子化以及水解产物(AMP)的解离。第 2 阶段包括溶剂水分子与活性部位金属离子的结合以及桥连氢氧离子的再生。发现水解产物的解离是酶反应过程的速率决定步骤。计算得出的活化吉布斯自由能≥16.0 和反应自由能-11.1 kcal/mol 与实验得出的活化自由能 16.6 kcal/mol 和反应自由能-11.5 kcal/mol 非常吻合,表明从这项研究中获得的催化机制是可靠的,并为未来的合理药物设计提供了坚实的基础。