Department of Thoracic Surgery, Peking University People's Hospital, Beijing, People's Republic of China.
Ann Thorac Surg. 2013 Nov;96(5):1761-8. doi: 10.1016/j.athoracsur.2013.06.038. Epub 2013 Aug 30.
The true incidence of occult N2 lymph node metastasis in patients with clinical N0 non-small cell lung cancer (NSCLC) remains controversial. Estimation of the probability of N2 lymph node metastasis can assist physicians when making diagnosis and treatment decisions.
We reviewed the medical records of 605 patients (group A) and 211 patients (group B) with computed tomography-defined N0 NSCLC that had an exact tumor-node-metastasis stage after surgery. Logistic regression analysis of group A's clinical characteristics was used to estimate the independent predictors of N2 lymph node metastasis. A prediction model was then built and internally validated by using cross validation and externally validated in group B. The model was also compared with 2 previously described models.
We identified 4 independent predictors of N2 disease: a younger age; larger tumor size; central tumor location; and adenocarcinoma or adenosquamous carcinoma pathology. The model showed good calibration (Hosmer-Lemeshow test: p = 0.96) with an area under the receiver operating characteristic curve (AUC) of 0.756 (95% confidence interval, 0.699 to 0.813). The AUC of our model was better than those of the other models when validated with independent data.
Our prediction model estimated the pretest probability of N2 disease in computed tomography-defined N0 NSCLC and was more accurate than the existing models. Use of our model can be of assistance when making clinical decisions about invasive or expensive mediastinal staging procedures.
临床 N0 期非小细胞肺癌(NSCLC)患者隐匿性 N2 淋巴结转移的真实发生率仍存在争议。对 N2 淋巴结转移概率的评估可协助医生进行诊断和治疗决策。
我们回顾了 605 例(A 组)和 211 例(B 组)经计算机断层扫描(CT)定义为 N0 NSCLC 且术后确切肿瘤-淋巴结-转移(TNM)分期的患者的病历。采用 A 组临床特征的逻辑回归分析,对 N2 淋巴结转移的独立预测因素进行评估。然后通过交叉验证构建并内部验证预测模型,并在 B 组中进行外部验证。该模型还与 2 个先前描述的模型进行了比较。
我们确定了 4 个 N2 疾病的独立预测因素:年龄较小;肿瘤较大;中央肿瘤位置;腺癌或腺鳞癌病理。该模型具有良好的校准度(Hosmer-Lemeshow 检验:p = 0.96),受试者工作特征曲线下面积(AUC)为 0.756(95%置信区间,0.699 至 0.813)。当使用独立数据进行验证时,我们的模型 AUC 优于其他模型。
我们的预测模型评估了 CT 定义的 N0 NSCLC 中 N2 疾病的术前概率,其准确性优于现有的模型。在对侵袭性或昂贵的纵隔分期程序做出临床决策时,使用我们的模型可以提供帮助。