Suppr超能文献

计算分析格列卫与 Abl、c-Kit、Lck 和 c-Src 酪氨酸激酶的结合特异性。

Computational analysis of the binding specificity of Gleevec to Abl, c-Kit, Lck, and c-Src tyrosine kinases.

机构信息

Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, The University of Chicago , 929 57th Street, Chicago, Illinois 60637, United States.

出版信息

J Am Chem Soc. 2013 Oct 2;135(39):14741-53. doi: 10.1021/ja405939x. Epub 2013 Sep 20.

Abstract

Gleevec, a well-known cancer therapeutic agent, is an effective inhibitor of several tyrosine kinases, including Abl and c-Kit, but displays less potency to inhibit closely homologous tyrosine kinases, such as Lck and c-Src. Because many structural features of the binding site are highly conserved in these homologous kinases, the molecular determinants responsible for the binding specificity of Gleevec remain poorly understood. To address this issue, free energy perturbation molecular dynamics (FEP/MD) simulations with explicit solvent was used to compute the binding affinity of Gleevec to Abl, c-Kit, Lck, and c-Src. The results of the FEP/MD calculations are in good agreement with experiments, enabling a detailed and quantitative dissection of the absolute binding free energy in terms of various thermodynamic contributions affecting the binding specificity of Gleevec to the kinases. Dominant binding free energy contributions arises from the van der Waals dispersive interaction, compensating about two-thirds of the unfavorable free energy penalty associated with the loss of translational, rotational, and conformational freedom of the ligand upon binding. In contrast, the contributions from electrostatic and repulsive interactions nearly cancel out due to solvent effects. Furthermore, the calculations show the importance of the conformation of the kinase activation loop. Among the kinases examined, Abl provides the most favorable binding environment for Gleevec via optimal protein-ligand interactions and a small free energy cost for loss of the translational, rotational, and conformational freedom upon ligand binding. The FEP/MD calculations additionally reveal that Lck and c-Src provide similar nonbinding interactions with the bound-Gleevec, but the former pays less entropic penalty for the ligand losing its translational, rotational, and conformational motions to bind, examining the empirically observed differential binding affinities of Gleevec between the two Src-family kinases.

摘要

格列卫是一种著名的癌症治疗药物,它是几种酪氨酸激酶的有效抑制剂,包括 Abl 和 c-Kit,但对密切相关的酪氨酸激酶,如 Lck 和 c-Src 的抑制作用较弱。由于这些同源激酶的结合位点的许多结构特征高度保守,因此格列卫结合特异性的分子决定因素仍知之甚少。为了解决这个问题,使用包含溶剂的自由能微扰分子动力学(FEP/MD)模拟来计算格列卫与 Abl、c-Kit、Lck 和 c-Src 的结合亲和力。FEP/MD 计算的结果与实验结果非常吻合,使我们能够根据影响格列卫与激酶结合特异性的各种热力学贡献,对绝对结合自由能进行详细和定量的剖析。主要的结合自由能贡献来自范德华色散相互作用,补偿了与配体结合时失去平移、旋转和构象自由度相关的不利自由能罚分的三分之二左右。相比之下,由于溶剂效应,静电和排斥相互作用的贡献几乎相互抵消。此外,计算表明激酶激活环构象的重要性。在所检查的激酶中,Abl 通过最佳的蛋白-配体相互作用和配体结合时平移、旋转和构象自由度损失的较小自由能成本,为格列卫提供了最有利的结合环境。FEP/MD 计算还表明,Lck 和 c-Src 与结合的格列卫提供了相似的非结合相互作用,但前者为配体失去平移、旋转和构象运动以结合付出的熵罚较小,这解释了经验观察到的格列卫与两种Src 家族激酶之间的差异结合亲和力。

相似文献

3
Explaining why Gleevec is a specific and potent inhibitor of Abl kinase.解释为什么格列卫是 Abl 激酶的一种特异性和强效抑制剂。
Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):1664-9. doi: 10.1073/pnas.1214330110. Epub 2013 Jan 14.

引用本文的文献

2
CHARMM at 45: Enhancements in Accessibility, Functionality, and Speed.CHARMM 45:可访问性、功能和速度的增强。
J Phys Chem B. 2024 Oct 17;128(41):9976-10042. doi: 10.1021/acs.jpcb.4c04100. Epub 2024 Sep 20.
3
Scalable Inhibitors of the Nsp3-Nsp4 Coupling in SARS-CoV-2.新型冠状病毒中Nsp3-Nsp4偶联的可扩展抑制剂
ACS Omega. 2023 Feb 6;8(6):5349-5360. doi: 10.1021/acsomega.2c06384. eCollection 2023 Feb 14.
9
Is Structure-Based Drug Design Ready for Selectivity Optimization?基于结构的药物设计是否已准备好进行选择性优化?
J Chem Inf Model. 2020 Dec 28;60(12):6211-6227. doi: 10.1021/acs.jcim.0c00815. Epub 2020 Oct 29.

本文引用的文献

3
Explaining why Gleevec is a specific and potent inhibitor of Abl kinase.解释为什么格列卫是 Abl 激酶的一种特异性和强效抑制剂。
Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):1664-9. doi: 10.1073/pnas.1214330110. Epub 2013 Jan 14.
7
How does a drug molecule find its target binding site?药物分子如何找到其靶标结合位点?
J Am Chem Soc. 2011 Jun 22;133(24):9181-3. doi: 10.1021/ja202726y. Epub 2011 May 13.
8
Resistance to imatinib: mutations and beyond.伊马替尼耐药:突变及其他。
Semin Hematol. 2010 Oct;47(4):335-43. doi: 10.1053/j.seminhematol.2010.06.005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验