Department of Biology, Laboratoire de Biochimie (CNRS UMR7654), Ecole Polytechnique, 91128 Palaiseau, France.
J Biol Chem. 2010 Apr 30;285(18):13807-15. doi: 10.1074/jbc.M110.109660. Epub 2010 Mar 3.
Tyrosine kinases transmit cellular signals through a complex mechanism, involving their phosphorylation and switching between inactive and active conformations. The cancer drug imatinib binds tightly to several homologous kinases, including Abl, but weakly to others, including Src. Imatinib specifically targets the inactive, so-called "DFG-out" conformation of Abl, which differs from the preferred, "DFG-in" conformation of Src in the orientation of a conserved Asp-Phe-Gly (DFG) activation loop. However, recent x-ray structures showed that Src can also adopt the DFG-out conformation and uses it to bind imatinib. The Src/Abl-binding free energy difference can thus be decomposed into two contributions. Contribution i measures the different protein-imatinib interactions when either kinase is in its DFG-out conformation. Contribution ii depends on the ability of imatinib to select or induce this conformation, i.e. on the relative stabilities of the DFG-out and DFG-in conformations of each kinase. Neither contribution has been measured experimentally. We use molecular dynamics simulations to show that contribution i is very small, 0.2 +/- 0.6 kcal/mol; imatinib interactions are very similar in the two kinases, including long range electrostatic interactions with the imatinib positive charge. Contribution ii, deduced using the experimental binding free energy difference, is much larger, 4.4 +/- 0.9 kcal/mol. Thus, conformational selection, easy in Abl, difficult in Src, underpins imatinib specificity. Contribution ii has a simple interpretation; it closely approximates the stability difference between the DFG-out and DFG-in conformations of apo-Src. Additional calculations show that conformational selection also governs the relative binding of imatinib to the kinases c-Kit and Lck. These results should help clarify the current framework for engineering kinase signaling.
酪氨酸激酶通过一种复杂的机制传递细胞信号,涉及它们的磷酸化和无活性与活性构象之间的转换。抗癌药物伊马替尼与包括 Abl 在内的几种同源激酶紧密结合,但与包括 Src 在内的其他激酶结合较弱。伊马替尼特异性靶向 Abl 的无活性,即所谓的“DFG-out”构象,与 Src 的首选,“DFG-in”构象在保守的天冬氨酸-苯丙氨酸-甘氨酸(DFG)激活环的取向上有所不同。然而,最近的 X 射线结构表明,Src 也可以采用 DFG-out 构象,并利用它来结合伊马替尼。因此,Src/Abl 结合自由能差异可以分解为两个贡献。贡献 i 测量当任一激酶处于 DFG-out 构象时激酶-伊马替尼相互作用的差异。贡献 ii 取决于伊马替尼选择或诱导这种构象的能力,即每种激酶的 DFG-out 和 DFG-in 构象的相对稳定性。这两个贡献都没有通过实验测量。我们使用分子动力学模拟表明,贡献 i 非常小,为 0.2 +/- 0.6 kcal/mol;伊马替尼在两种激酶中的相互作用非常相似,包括与伊马替尼正电荷的远程静电相互作用。使用实验结合自由能差异推断出的贡献 ii 要大得多,为 4.4 +/- 0.9 kcal/mol。因此,构象选择,在 Abl 中很容易,在 Src 中很难,这为伊马替尼的特异性提供了基础。贡献 ii 有一个简单的解释;它非常接近 apo-Src 的 DFG-out 和 DFG-in 构象之间的稳定性差异。额外的计算表明,构象选择也控制了伊马替尼与激酶 c-Kit 和 Lck 的相对结合。这些结果应该有助于澄清当前用于工程激酶信号的框架。