Suppr超能文献

贝叶斯学习稀疏多尺度图像表示。

Bayesian learning of sparse multiscale image representations.

出版信息

IEEE Trans Image Process. 2013 Dec;22(12):4972-83. doi: 10.1109/TIP.2013.2280188.

Abstract

Multiscale representations of images have become a standard tool in image analysis. Such representations offer a number of advantages over fixed-scale methods, including the potential for improved performance in denoising, compression, and the ability to represent distinct but complementary information that exists at various scales. A variety of multiresolution transforms exist, including both orthogonal decompositions such as wavelets as well as nonorthogonal, overcomplete representations. Recently, techniques for finding adaptive, sparse representations have yielded state-of-the-art results when applied to traditional image processing problems. Attempts at developing multiscale versions of these so-called dictionary learning models have yielded modest but encouraging results. However, none of these techniques has sought to combine a rigorous statistical formulation of the multiscale dictionary learning problem and the ability to share atoms across scales. We present a model for multiscale dictionary learning that overcomes some of the drawbacks of previous approaches by first decomposing an input into a pyramid of distinct frequency bands using a recursive filtering scheme, after which we perform dictionary learning and sparse coding on the individual levels of the resulting pyramid. The associated image model allows us to use a single set of adapted dictionary atoms that is shared--and learned--across all scales in the model. The underlying statistical model of our proposed method is fully Bayesian and allows for efficient inference of parameters, including the level of additive noise for denoising applications. We apply the proposed model to several common image processing problems including non-Gaussian and nonstationary denoising of real-world color images.

摘要

图像的多尺度表示已经成为图像分析中的标准工具。与固定尺度方法相比,这种表示方法具有许多优势,包括在去噪、压缩方面的性能提升潜力,以及表示存在于不同尺度上的不同但互补信息的能力。存在多种多分辨率变换,包括正交分解(如小波)和非正交、过完备表示。最近,用于寻找自适应、稀疏表示的技术在应用于传统图像处理问题时取得了最先进的结果。尝试开发这些所谓的字典学习模型的多尺度版本已经取得了适度但令人鼓舞的结果。然而,这些技术都没有试图将多尺度字典学习问题的严格统计公式与跨尺度共享原子的能力结合起来。我们提出了一种多尺度字典学习模型,通过首先使用递归滤波方案将输入分解为具有不同频率带的金字塔,然后在得到的金字塔的各个级别上执行字典学习和稀疏编码,从而克服了以前方法的一些缺点。相关的图像模型允许我们使用一组共享的、在模型的所有尺度上学习的自适应字典原子。我们提出的方法的基础统计模型是完全贝叶斯的,并允许对参数进行有效的推断,包括用于去噪应用的附加噪声水平。我们将所提出的模型应用于几个常见的图像处理问题,包括真实彩色图像的非高斯和非平稳去噪。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验