Suppr超能文献

基于非局部稀疏K-SVD字典学习的图像融合

Image fusion via nonlocal sparse K-SVD dictionary learning.

作者信息

Li Ying, Li Fangyi, Bai Bendu, Shen Qiang

出版信息

Appl Opt. 2016 Mar 1;55(7):1814-23. doi: 10.1364/AO.55.001814.

Abstract

Image fusion aims to merge two or more images captured via various sensors of the same scene to construct a more informative image by integrating their details. Generally, such integration is achieved through the manipulation of the representations of the images concerned. Sparse representation plays an important role in the effective description of images, offering a great potential in a variety of image processing tasks, including image fusion. Supported by sparse representation, in this paper, an approach for image fusion by the use of a novel dictionary learning scheme is proposed. The nonlocal self-similarity property of the images is exploited, not only at the stage of learning the underlying description dictionary but during the process of image fusion. In particular, the property of nonlocal self-similarity is combined with the traditional sparse dictionary. This results in an improved learned dictionary, hereafter referred to as the nonlocal sparse K-SVD dictionary (where K-SVD stands for the K times singular value decomposition that is commonly used in the literature), and abbreviated to NL_SK_SVD. The performance of the NL_SK_SVD dictionary is applied for image fusion using simultaneous orthogonal matching pursuit. The proposed approach is evaluated with different types of images, and compared with a number of alternative image fusion techniques. The resultant superior fused images using the present approach demonstrates the efficacy of the NL_SK_SVD dictionary in sparse image representation.

摘要

图像融合旨在将通过同一场景的各种传感器捕获的两个或多个图像进行合并,通过整合它们的细节来构建一个信息更丰富的图像。一般来说,这种整合是通过对相关图像表示的处理来实现的。稀疏表示在图像的有效描述中起着重要作用,在包括图像融合在内的各种图像处理任务中具有巨大潜力。在稀疏表示的支持下,本文提出了一种使用新颖字典学习方案的图像融合方法。不仅在学习基础描述字典的阶段,而且在图像融合过程中,都利用了图像的非局部自相似特性。特别地,将非局部自相似特性与传统稀疏字典相结合。这产生了一个改进的学习字典,此后称为非局部稀疏K-SVD字典(其中K-SVD代表文献中常用的K次奇异值分解),简称为NL_SK_SVD。NL_SK_SVD字典的性能用于使用同步正交匹配追踪的图像融合。所提出的方法用不同类型的图像进行评估,并与许多替代图像融合技术进行比较。使用本方法得到的 superior 融合图像证明了NL_SK_SVD字典在稀疏图像表示中的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验