Suppr超能文献

葡聚糖功能化石墨烯的体外血液学和体内血管活性评估

In vitro hematological and in vivo vasoactivity assessment of dextran functionalized graphene.

作者信息

Chowdhury Sayan Mullick, Kanakia Shruti, Toussaint Jimmy D, Frame Mary D, Dewar Anthony M, Shroyer Kenneth R, Moore William, Sitharaman Balaji

机构信息

Department of Biomedical Engineering, Stony Brook, NY.

出版信息

Sci Rep. 2013;3:2584. doi: 10.1038/srep02584.

Abstract

The intravenous, intramuscular or intraperitoneal administration of water solubilized graphene nanoparticles for biomedical applications will result in their interaction with the hematological components and vasculature. Herein, we have investigated the effects of dextran functionalized graphene nanoplatelets (GNP-Dex) on histamine release, platelet activation, immune activation, blood cell hemolysis in vitro, and vasoactivity in vivo. The results indicate that GNP-Dex formulations prevented histamine release from activated RBL-2H3 rat mast cells, and at concentrations ≥ 7 mg/ml, showed a 12-20% increase in levels of complement proteins. Cytokine (TNF-Alpha and IL-10) levels remained within normal range. GNP-Dex formulations did not cause platelet activation or blood cell hemolysis. Using the hamster cheek pouch in vivo model, the initial vasoactivity of GNP-Dex at concentrations (1-50 mg/ml) equivalent to the first pass of a bolus injection was a brief concentration-dependent dilation in arcade and terminal arterioles. However, they did not induce a pro-inflammatory endothelial dysfunction effect.

摘要

将水溶性石墨烯纳米颗粒用于生物医学应用时,通过静脉内、肌肉内或腹膜内给药会使其与血液成分和脉管系统发生相互作用。在此,我们研究了葡聚糖功能化的石墨烯纳米片(GNP-Dex)对组胺释放、血小板活化、免疫激活、体外血细胞溶血以及体内血管活性的影响。结果表明,GNP-Dex制剂可阻止组胺从活化的RBL-2H3大鼠肥大细胞中释放,并且在浓度≥7 mg/ml时,补体蛋白水平升高了12 - 20%。细胞因子(肿瘤坏死因子-α和白细胞介素-10)水平保持在正常范围内。GNP-Dex制剂不会引起血小板活化或血细胞溶血。使用仓鼠颊囊体内模型,浓度(1 - 50 mg/ml)相当于单次推注首过剂量的GNP-Dex的初始血管活性是在弓状动脉和终末小动脉中出现短暂的浓度依赖性扩张。然而,它们不会诱导促炎性内皮功能障碍效应。

相似文献

3
Physicochemical characterization of a novel graphene-based magnetic resonance imaging contrast agent.
Int J Nanomedicine. 2013;8:2821-33. doi: 10.2147/IJN.S47062. Epub 2013 Aug 5.
4
In vitro hematological and in vivo immunotoxicity assessment of dextran stabilized iron oxide nanoparticles.
Colloids Surf B Biointerfaces. 2015 Oct 1;134:122-30. doi: 10.1016/j.colsurfb.2015.06.046. Epub 2015 Jun 29.
5
Vasoactive effects of stable aqueous suspensions of single walled carbon nanotubes in hamsters and mice.
Nanotoxicology. 2014 Dec;8(8):867-75. doi: 10.3109/17435390.2013.837209. Epub 2013 Sep 30.
6
One-pot synthesis of dextran decorated reduced graphene oxide nanoparticles for targeted photo-chemotherapy.
Carbohydr Polym. 2016 Jun 25;144:223-9. doi: 10.1016/j.carbpol.2016.02.062. Epub 2016 Feb 26.
8
Impact of graphene oxide on the structure and function of important multiple blood components by a dose-dependent pattern.
J Biomed Mater Res A. 2015 Jun;103(6):2006-14. doi: 10.1002/jbm.a.35341. Epub 2014 Oct 3.
9
Fabrication of aptamer decorated dextran coated nano-graphene oxide for targeted drug delivery.
Carbohydr Polym. 2017 Jan 2;155:218-229. doi: 10.1016/j.carbpol.2016.08.046. Epub 2016 Aug 16.
10
Hemocompatibility and macrophage response of pristine and functionalized graphene.
Small. 2012 Apr 23;8(8):1251-63. doi: 10.1002/smll.201102393. Epub 2012 Feb 15.

引用本文的文献

1
Graphene-based materials: an innovative approach for neural regeneration and spinal cord injury repair.
RSC Adv. 2025 Mar 31;15(13):9829-9853. doi: 10.1039/d4ra07976k. eCollection 2025 Mar 28.
2
Efficient skin interactions of graphene derivatives: challenge, opportunity or both?
Nanoscale Adv. 2023 Oct 11;5(21):5923-5931. doi: 10.1039/d3na00574g. eCollection 2023 Oct 24.
3
Synthesis and Functionalization of Graphene Materials for Biomedical Applications: Recent Advances, Challenges, and Perspectives.
Adv Sci (Weinh). 2023 Mar;10(9):e2205292. doi: 10.1002/advs.202205292. Epub 2023 Jan 19.
4
Application of non-metal nanoparticles, as a novel approach, for improving the stability of blood products: 2011-2021.
Prog Biomater. 2022 Jun;11(2):137-161. doi: 10.1007/s40204-022-00188-5. Epub 2022 May 10.
5
Graphene Family Nanomaterials in Ocular Applications: Physicochemical Properties and Toxicity.
Chem Res Toxicol. 2021 Jun 21;34(6):1386-1402. doi: 10.1021/acs.chemrestox.0c00340. Epub 2021 May 27.
6
Microparticles from aged packed red blood cell units stimulate pulmonary microthrombus formation via P-selectin.
Thromb Res. 2020 Jan;185:160-166. doi: 10.1016/j.thromres.2019.11.028. Epub 2019 Nov 26.
8
Metabolomic insights of macrophage responses to graphene nanoplatelets: Role of scavenger receptor CD36.
PLoS One. 2018 Nov 7;13(11):e0207042. doi: 10.1371/journal.pone.0207042. eCollection 2018.
10
Safety and Efficacy of A High Performance Graphene-Based Magnetic Resonance Imaging Contrast Agent for Renal Abnormalities.
Graphene Technol. 2016 Dec;1(1):17-28. doi: 10.1007/s41127-016-0001-2. Epub 2016 Aug 3.

本文引用的文献

1
Biocompatibility of Graphene Oxide.
Nanoscale Res Lett. 2011 Dec;6(1):8. doi: 10.1007/s11671-010-9751-6. Epub 2010 Aug 21.
2
Vasoactive effects of stable aqueous suspensions of single walled carbon nanotubes in hamsters and mice.
Nanotoxicology. 2014 Dec;8(8):867-75. doi: 10.3109/17435390.2013.837209. Epub 2013 Sep 30.
3
Physicochemical characterization of a novel graphene-based magnetic resonance imaging contrast agent.
Int J Nanomedicine. 2013;8:2821-33. doi: 10.2147/IJN.S47062. Epub 2013 Aug 5.
4
Fabrication and Characterization of Three-Dimensional Macroscopic All-Carbon Scaffolds.
Carbon N Y. 2013 Mar 1;53:90-100. doi: 10.1016/j.carbon.2012.10.035. Epub 2012 Oct 24.
5
Two-dimensional nanostructure-reinforced biodegradable polymeric nanocomposites for bone tissue engineering.
Biomacromolecules. 2013 Mar 11;14(3):900-9. doi: 10.1021/bm301995s. Epub 2013 Feb 27.
6
Functionalization of graphene oxide generates a unique interface for selective serum protein interactions.
ACS Appl Mater Interfaces. 2013 Feb;5(4):1370-7. doi: 10.1021/am302706g. Epub 2013 Feb 12.
7
Cell specific cytotoxicity and uptake of graphene nanoribbons.
Biomaterials. 2013 Jan;34(1):283-93. doi: 10.1016/j.biomaterials.2012.09.057. Epub 2012 Oct 13.
8
Effects of long and short carboxylated or aminated multiwalled carbon nanotubes on blood coagulation.
PLoS One. 2012;7(7):e38995. doi: 10.1371/journal.pone.0038995. Epub 2012 Jul 10.
10
Graphene: a versatile nanoplatform for biomedical applications.
Nanoscale. 2012 Jul 7;4(13):3833-42. doi: 10.1039/c2nr31040f. Epub 2012 Jun 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验