Suppr超能文献

相似文献

1
Two-dimensional nanostructure-reinforced biodegradable polymeric nanocomposites for bone tissue engineering.
Biomacromolecules. 2013 Mar 11;14(3):900-9. doi: 10.1021/bm301995s. Epub 2013 Feb 27.
2
Two-dimensional graphene oxide-reinforced porous biodegradable polymeric nanocomposites for bone tissue engineering.
J Biomed Mater Res A. 2019 Jun;107(6):1143-1153. doi: 10.1002/jbm.a.36606. Epub 2019 Mar 13.
3
Tungsten disulfide nanotubes reinforced biodegradable polymers for bone tissue engineering.
Acta Biomater. 2013 Sep;9(9):8365-73. doi: 10.1016/j.actbio.2013.05.018. Epub 2013 May 29.
6
In vitro cytocompatibility of one-dimensional and two-dimensional nanostructure-reinforced biodegradable polymeric nanocomposites.
J Biomed Mater Res A. 2015 Jul;103(7):2309-21. doi: 10.1002/jbm.a.35363. Epub 2014 Nov 19.
7
Boron nitride nanotubes and nanoplatelets as reinforcing agents of polymeric matrices for bone tissue engineering.
J Biomed Mater Res B Appl Biomater. 2017 Feb;105(2):406-419. doi: 10.1002/jbm.b.33565. Epub 2015 Nov 3.
9
Mechanical properties and biocompatibility of functionalized carbon nanotubes/polypropylene composites.
J Biomater Sci Polym Ed. 2016 Jul;27(10):1003-16. doi: 10.1080/09205063.2016.1175776. Epub 2016 Apr 26.

引用本文的文献

2
Application of loaded graphene oxide biomaterials in the repair and treatment of bone defects.
Bone Joint Res. 2024 Dec 5;13(12):725-740. doi: 10.1302/2046-3758.1312.BJR-2024-0048.R1.
3
Development of Light, Strong, and Water-Resistant PVA Composite Aerogels.
Nanomaterials (Basel). 2024 Apr 24;14(9):745. doi: 10.3390/nano14090745.
4
Current developments and future perspectives of nanotechnology in orthopedic implants: an updated review.
Front Bioeng Biotechnol. 2024 Mar 18;12:1342340. doi: 10.3389/fbioe.2024.1342340. eCollection 2024.
6
Gaussian Curvature Effects on Graphene Quantum Dots.
Nanomaterials (Basel). 2022 Dec 25;13(1):95. doi: 10.3390/nano13010095.
8
Carbon nanomaterials for drug delivery and tissue engineering.
Front Chem. 2022 Sep 12;10:990362. doi: 10.3389/fchem.2022.990362. eCollection 2022.
9
Recent Advances of Chitosan Formulations in Biomedical Applications.
Int J Mol Sci. 2022 Sep 19;23(18):10975. doi: 10.3390/ijms231810975.
10
Quantum Revivals in Curved Graphene Nanoflakes.
Nanomaterials (Basel). 2022 Jun 7;12(12):1953. doi: 10.3390/nano12121953.

本文引用的文献

1
Fabrication and Characterization of Three-Dimensional Macroscopic All-Carbon Scaffolds.
Carbon N Y. 2013 Mar 1;53:90-100. doi: 10.1016/j.carbon.2012.10.035. Epub 2012 Oct 24.
2
Carbon nanotube-poly(lactide-co-glycolide) composite scaffolds for bone tissue engineering applications.
Ann Biomed Eng. 2013 May;41(5):904-16. doi: 10.1007/s10439-012-0728-8. Epub 2013 Jan 3.
3
Cell specific cytotoxicity and uptake of graphene nanoribbons.
Biomaterials. 2013 Jan;34(1):283-93. doi: 10.1016/j.biomaterials.2012.09.057. Epub 2012 Oct 13.
5
Bone graft substitutes: What are the options?
Surgeon. 2012 Aug;10(4):230-9. doi: 10.1016/j.surge.2012.04.001. Epub 2012 Jun 6.
6
Graphene: a versatile nanoplatform for biomedical applications.
Nanoscale. 2012 Jul 7;4(13):3833-42. doi: 10.1039/c2nr31040f. Epub 2012 Jun 1.
7
Stability, dynamics, and lubrication of MoS2 platelets and nanotubes.
Langmuir. 2012 May 15;28(19):7393-400. doi: 10.1021/la300871q. Epub 2012 May 4.
8
Edge-carboxylated graphene nanosheets via ball milling.
Proc Natl Acad Sci U S A. 2012 Apr 10;109(15):5588-93. doi: 10.1073/pnas.1116897109. Epub 2012 Mar 27.
9
Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices.
Chem Commun (Camb). 2012 Apr 18;48(31):3686-99. doi: 10.1039/c2cc00110a. Epub 2012 Mar 13.
10
Unimpeded permeation of water through helium-leak-tight graphene-based membranes.
Science. 2012 Jan 27;335(6067):442-4. doi: 10.1126/science.1211694.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验