Department of Chemistry, University of Rochester, Rochester, New York 14627, United States.
J Am Chem Soc. 2013 Oct 2;135(39):14659-69. doi: 10.1021/ja405257s. Epub 2013 Sep 18.
A series of mononuclear nickel(II) thiolate complexes (Et4N)Ni(X-pyS)3 (Et4N = tetraethylammonium; X = 5-H (1a), 5-Cl (1b), 5-CF3 (1c), 6-CH3 (1d); pyS = pyridine-2-thiolate), Ni(pySH)4(NO3)2 (2), (Et4N)Ni(4,6-Y2-pymS)3 (Y = H (3a), CH3 (3b); pymS = pyrimidine-2-thiolate), and Ni(4,4'-Z-2,2'-bpy)(pyS)2 (Z = H (4a), CH3 (4b), OCH3 (4c); bpy = bipyridine) have been synthesized in high yield and characterized. X-ray diffraction studies show that 2 is square planar, while the other complexes possess tris-chelated distorted-octahedral geometries. All of the complexes are active catalysts for both the photocatalytic and electrocatalytic production of hydrogen in 1/1 EtOH/H2O. When coupled with fluorescein (Fl) as the photosensitizer (PS) and triethylamine (TEA) as the sacrificial electron donor, these complexes exhibit activity for light-driven hydrogen generation that correlates with ligand electron donor ability. Complex 4c achieves over 7300 turnovers of H2 in 30 h, which is among the highest reported for a molecular noble metal-free system. The initial photochemical step is reductive quenching of Fl* by TEA because of the latter's greater concentration. When system concentrations are modified so that oxidative quenching of Fl* by catalyst becomes more dominant, system durability increases, with a system lifetime of over 60 h. System variations and cyclic voltammetry experiments are consistent with a CECE mechanism that is common to electrocatalytic and photocatalytic hydrogen production. This mechanism involves initial protonation of the catalyst followed by reduction and then additional protonation and reduction steps to give a key Ni-H(-)/N-H(+) intermediate that forms the H-H bond in the turnover-limiting step of the catalytic cycle. A key to the activity of these catalysts is the reversible dechelation and protonation of the pyridine N atoms, which enable an internal heterocoupling of a metal hydride and an N-bound proton to produce H2.
一系列单核镍(II)硫醇配合物(Et4N)Ni(X-pyS)3(Et4N = 四乙铵;X = 5-H(1a),5-Cl(1b),5-CF3(1c),6-CH3(1d);pyS = 吡啶-2-硫醇),Ni(pySH)4(NO3)2(2),(Et4N)Ni(4,6-Y2-pymS)3(Y = H(3a),CH3(3b);pymS = 嘧啶-2-硫醇)和 Ni(4,4'-Z-2,2'-bpy)(pyS)2(Z = H(4a),CH3(4b),OCH3(4c);bpy = 联吡啶)以高产率合成并进行了表征。X 射线衍射研究表明,2 是平面正方形,而其他配合物具有三配位扭曲八面体几何结构。所有配合物都是在 1/1 EtOH/H2O 中光催化和电催化制氢的高效催化剂。当与荧光素(Fl)作为光敏剂(PS)和三乙胺(TEA)作为牺牲电子供体结合使用时,这些配合物表现出与配体电子供体能力相关的光驱动制氢活性。配合物 4c 在 30 小时内实现了超过 7300 次 H2 的转化,这是报道的分子无贵金属体系中最高的之一。初始光化学步骤是由于后者浓度更高,TEA 还原猝灭 Fl*。当修改系统浓度以使催化剂对 Fl*的氧化猝灭变得更加占主导地位时,系统的耐久性会增加,系统的寿命超过 60 小时。系统变化和循环伏安实验与电催化和光催化制氢中常见的 CECE 机制一致。该机制涉及催化剂的初始质子化,然后还原,然后再进行额外的质子化和还原步骤,形成关键的 Ni-H(-)/N-H(+)中间体,在催化循环的周转限制步骤中形成 H-H 键。这些催化剂活性的关键是吡啶 N 原子的可逆去螯合和质子化,这使得金属氢化物和 N 键合质子的内部杂偶联能够产生 H2。