Czaikowski Maia E, Anferov Sophie W, Tascher Alex P, Anderson John S
Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States.
J Am Chem Soc. 2024 Jan 10;146(1):476-486. doi: 10.1021/jacs.3c09885. Epub 2024 Jan 1.
Alkyne semihydrogenation is a broadly important transformation in chemical synthesis. Here, we introduce an electrochemical method for the selective semihydrogenation of terminal alkynes using a dihydrazonopyrrole Ni complex capable of storing an H equivalent (2H + 2e) on the ligand backbone. This method is chemoselective for the semihydrogenation of terminal alkynes over internal alkynes or alkenes. Mechanistic studies reveal that the transformation is concerted and Z-selective. Calculations support a ligand-based hydrogen-atom transfer pathway instead of a hydride mechanism, which is commonly invoked for transition metal hydrogenation catalysts. The synthesis of the proposed intermediates demonstrates that the catalytic mechanism proceeds through a reduced formal Ni(I) species. The high yields for terminal alkene products without over-reduction or oligomerization are among the best reported for any homogeneous catalyst. Furthermore, the metal-ligand cooperative hydrogen transfer enabled with this system directs the efficient flow of H atom equivalents toward alkyne reduction rather than hydrogen evolution, providing a blueprint for applying similar strategies toward a wide range of electroreductive transformations.
炔烃半氢化反应是化学合成中一项具有广泛重要性的转化反应。在此,我们介绍一种电化学方法,用于使用一种能够在配体主链上储存一个氢当量(2H + 2e)的二腙基吡咯镍配合物对末端炔烃进行选择性半氢化反应。该方法对于末端炔烃的半氢化反应相对于内部炔烃或烯烃具有化学选择性。机理研究表明,该转化反应是协同的且具有Z选择性。计算结果支持基于配体的氢原子转移途径,而非常用于过渡金属氢化催化剂的氢化物机理。所提出中间体的合成表明催化机理是通过还原态的形式Ni(I)物种进行的。末端烯烃产物的高产率且无过度还原或齐聚现象,在已报道的任何均相催化剂中都是最佳的之一。此外,该体系实现的金属 - 配体协同氢转移引导氢原子当量有效地流向炔烃还原而非析氢反应,为将类似策略应用于广泛的电还原转化反应提供了蓝图。