State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, & Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
Phys Chem Chem Phys. 2013 Oct 28;15(40):17105-11. doi: 10.1039/c3cp52723a.
Plasmonics have been proven to be an effective way to harness more incident light to achieve high efficiency in photovoltaic devices. Herein, we explore the possibility that plasmonics can be utilized to enhance light trapping and power conversion efficiency (PCE) for polymer-quantum dot (QD) hybrid solar cells (HSCs). Based on a low band-gap polymer poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) and a CdSe QD bulk-heterojunction (BHJ) system, gold nanoparticles were doped at different locations of the devices. Successfully, an improved PCE of 3.20 ± 0.22% and 3.16 ± 0.15% was achieved by doping the hole transporting layer and the active layer, respectively, which are among the highest values reported for CdSe QD based HSCs. A detailed study of processing, characterization, microscopy, and device fabrication is conducted to understand the underlying mechanism for the enhanced device performance. The success of this work provides a simple and generally applicable approach to enhance light harnessing of polymer-QD hybrid solar cells.
等离子体激元已被证明是一种有效的方法,可以利用更多的入射光来实现光伏器件的高效率。在此,我们探索了等离子体可以用于增强聚合物-量子点(QD)混合太阳能电池(HSCs)的光捕获和功率转换效率(PCE)的可能性。基于低带隙聚合物聚[2,6-(4,4-双-(2-乙基己基)-4H-环戊二烯并[2,1-b;3,4-b']-二噻吩)-交替-4,7-(2,1,3-苯并噻二唑)](PCPDTBT)和 CdSe QD 体异质结(BHJ)系统,在器件的不同位置掺杂了金纳米粒子。成功地,通过掺杂空穴传输层和活性层,分别实现了 3.20±0.22%和 3.16±0.15%的改进 PCE,这是报道的基于 CdSe QD 的 HSCs 中的最高值之一。对加工、特性、显微镜和器件制造进行了详细的研究,以了解增强器件性能的潜在机制。这项工作的成功为增强聚合物-QD 混合太阳能电池的光利用提供了一种简单且普遍适用的方法。